You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
We detail data download and release instructions for preprocessing with scripts for ScanNet + 3RScan.
@@ -112,6 +113,39 @@ Scan3R/
112
113
| │ └── sel_cams_on_mesh.png (visualisation of the cameras selected for computing RGB features per scan)
113
114
| └── ...
114
115
```
116
+
### MultiScan
117
+
118
+
#### Running preprocessing scripts
119
+
Adjust the path parameters of `MultiScan` in the config files under `configs/preprocess`. Run the following (after changing the `--config-path` in the bash file):
120
+
121
+
```bash
122
+
$ bash scripts/preprocess/process_multiscan.sh
123
+
```
124
+
125
+
Our script for MultiScan dataset performs the following additional processing:
126
+
127
+
- 3D-to-2D projection for 2D segmentation and stores as `gt-projection-seg.pt` for each scan.
128
+
129
+
Post running preprocessing, the data structure should look like the following:
130
+
131
+
```
132
+
MultiScan/
133
+
├── objects_chunked/ (object data chunked into hdf5 format for instance baseline training)
134
+
| ├── train_objects.h5
135
+
| └── val_objects.h5
136
+
├── scans/
137
+
| ├── scene_00000_00/
138
+
| │ ├── gt-projection-seg.pt -> 3D-to-2D projected data consisting of framewise 2D instance segmentation
139
+
| │ ├── data1D.pt -> all 1D data + encoded (object referrals + BLIP features)
140
+
| │ ├── data2D.pt -> all 2D data + encoded (RGB + floorplan + DinoV2 features)
141
+
| │ ├── data2D_all_images.pt (RGB features of every image of every scan)
142
+
| │ ├── data3D.pt -> all 3D data + encoded (Point Cloud + I2PMAE features - object only)
143
+
| │ ├── object_id_to_label_id_map.pt -> Instance ID to NYU40 Label mapped
144
+
| │ ├── objectsDataMultimodal.pt -> object data combined from data1D.pt + data2D.pt + data3D.pt (for easier loading)
145
+
| │ └── sel_cams_on_mesh.png (visualisation of the cameras selected for computing RGB features per scan)
146
+
| └── ...
147
+
```
148
+
115
149
116
150
### ARKitScenes
117
151
@@ -144,4 +178,4 @@ ARKitScenes/
144
178
| │ ├── objectsDataMultimodal.pt -> object data combined from data1D.pt + data2D.pt + data3D.pt (for easier loading)
145
179
| │ └── sel_cams_on_mesh.png (visualisation of the cameras selected for computing RGB features per scan)
> To run our demo, you only need to download generated embedding data; no need for any data preprocessing.
123
125
@@ -134,7 +136,7 @@ Various configurable parameters:
134
136
-`--database_path`: Path to the precomputed embeddings of the database scenes downloaded before (eg: `./release_data/embed_scannet.pt`).
135
137
-`--query_modality`: Modality of the query scene, Options: `point`, `rgb`, `floorplan`, `referral`
136
138
-`--database_modality`: Modality used for retrieval. Same options as above.
137
-
-`--ckpt`: Path to the pre-trained scene crossover model checkpoint (details [here](#checkpoints)), example_path: `./checkpoints/scene_crossover_scannet+scan3r.pth/`).
139
+
-`--ckpt`: Path to the pre-trained scene crossover model checkpoint (details [here](#checkpoints)), example_path: `./checkpoints/scene_crossover_scannet+scan3r.pth/`.
138
140
139
141
For embedding and pre-trained model download, refer to [generated embedding data](DATA.md#generated-embedding-data) and [checkpoints](#checkpoints) sections.
Adjust path/configuration parameters in `configs/train/train_scene_crossover.yaml`. You can also add your customised dataset or choose to train on Scannet, 3RScan & ARKitScenes or any combination of the same. Run the following:
24
+
Adjust path/configuration parameters in `configs/train/train_scene_crossover.yaml`. You can also add your customised dataset or choose to train on Scannet, 3RScan, MultiScan & ARKitScenes or any combination of the same. Run the following:
0 commit comments