You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
We detail data download and release instructions for preprocessing with scripts for ScanNet + 3RScan.
@@ -110,4 +111,32 @@ Scan3R/
110
111
| │ ├── objectsDataMultimodal.pt -> object data combined from data1D.pt + data2D.pt + data3D.pt (for easier loading)
111
112
| │ └── sel_cams_on_mesh.png (visualisation of the cameras selected for computing RGB features per scan)
112
113
| └── ...
113
-
```
114
+
```
115
+
116
+
### MultiScan
117
+
Here we refer to the contents of the folder `processed_data/MultiScan` on GDrive. The data structure is the following:
118
+
119
+
```
120
+
MultiScan/
121
+
├── objects_chunked/ (object data chunked into hdf5 format for instance baseline training)
122
+
| ├── train_objects.h5
123
+
| └── val_objects.h5
124
+
├── scans/
125
+
| ├── scene_00000_00/
126
+
| │ ├── gt-projection-seg.pt -> 3D-to-2D projected data consisting of framewise 2D instance segmentation
127
+
| │ ├── data1D.pt -> all 1D data + encoded (object referrals + BLIP features)
128
+
| │ ├── data2D.pt -> all 2D data + encoded (RGB + floorplan + DinoV2 features)
129
+
| │ ├── data2D_all_images.pt (RGB features of every image of every scan)
130
+
| │ ├── data3D.pt -> all 3D data + encoded (Point Cloud + I2PMAE features - object only)
131
+
| │ ├── object_id_to_label_id_map.pt -> Instance ID to NYU40 Label mapped
132
+
| │ ├── objectsDataMultimodal.pt -> object data combined from data1D.pt + data2D.pt + data3D.pt (for easier loading)
133
+
| │ └── sel_cams_on_mesh.png (visualisation of the cameras selected for computing RGB features per scan)
134
+
| └── ...
135
+
```
136
+
137
+
#### Running preprocessing scripts
138
+
Adjust the path parameters of `MultiScan` in the config files under `configs/preprocess`. Run the following (after changing the `--config-path` in the bash file):
> To run our demo, you only need to download generated embedding data; no need for any data preprocessing.
122
124
@@ -133,7 +135,7 @@ Various configurable parameters:
133
135
-`--database_path`: Path to the precomputed embeddings of the database scenes downloaded before (eg: `./release_data/embed_scannet.pt`).
134
136
-`--query_modality`: Modality of the query scene, Options: `point`, `rgb`, `floorplan`, `referral`
135
137
-`--database_modality`: Modality used for retrieval. Same options as above.
136
-
-`--ckpt`: Path to the pre-trained scene crossover model checkpoint (details [here](#checkpoints)), example_path: `./checkpoints/scene_crossover_scannet+scan3r.pth/`).
138
+
-`--ckpt`: Path to the pre-trained scene crossover model checkpoint (details [here](#checkpoints)), example_path: `./checkpoints/scene_crossover_scannet+scan3r.pth/`.
137
139
138
140
For embedding and pre-trained model download, refer to [generated embedding data](DATA.md#generated-embedding-data) and [checkpoints](#checkpoints) sections.
Adjust path/configuration parameters in `configs/train/train_scene_crossover.yaml`. You can also add your customised dataset or choose to train on Scannet & 3RScan or either. Run the following:
24
+
Adjust path/configuration parameters in `configs/train/train_scene_crossover.yaml`. You can also add your customised dataset or choose to train on Scannet, 3RScan & MultiScan or any combination of the same. Run the following:
0 commit comments