Skip to content

[Feature Request]: Structured JSON Logging with Correlation IDsΒ #300

@crivetimihai

Description

@crivetimihai

🧭 Epic - Structured JSON Logging with Correlation IDs

Title: Structured JSON Logging with Correlation IDs
Goal: Implement comprehensive structured JSON logging with correlation ID tracking across all MCP Gateway components to enable advanced observability, debugging, and performance analysis
Why now: As the MCP Gateway scales with multiple protocols (MCP, A2A), marketplace features, and enterprise deployments, robust logging and tracing becomes critical for operational excellence, debugging complex workflows, and meeting enterprise observability requirements.


πŸ™‹β€β™‚οΈ User Stories & Acceptance Criteria

Story 1 β€” Correlation ID Generation & Propagation

As a DevOps Engineer
I want every request to have a unique correlation ID that follows the request through all system components
So that I can trace complete request flows across services and identify issues quickly.

βœ… Acceptance Criteria
Scenario: Automatic correlation ID generation
  Given a new request arrives at the MCP Gateway
  When the request doesn't contain an existing correlation ID
  Then the system generates a new UUID correlation ID
  And includes it in the response headers as "X-Correlation-ID"
  And propagates it to all downstream service calls
  And logs it in all related log entries
  And maintains the correlation ID throughout the request lifecycle

Scenario: Correlation ID preservation from clients
  Given a client request includes an "X-Correlation-ID" header
  When the request is processed by the gateway
  Then the existing correlation ID is preserved and used
  And all log entries include the client-provided correlation ID
  And downstream services receive the same correlation ID
  And the response includes the same correlation ID in headers

Scenario: Cross-service correlation tracking
  Given a request involves multiple internal services (tool invocation, authentication, caching)
  When the request flows through these services
  Then each service logs entries with the same correlation ID
  And service-to-service calls propagate the correlation ID
  And timing information is tracked per service
  And the complete request flow can be reconstructed from logs

Story 2 β€” Structured JSON Log Format

As a Platform Engineer
I want all log entries to use a consistent, structured JSON format
So that logs can be easily parsed, searched, and analyzed by log aggregation tools.

βœ… Acceptance Criteria
Scenario: Consistent JSON log structure
  Given the MCP Gateway is processing requests
  When any component writes log entries
  Then all logs follow a consistent JSON schema with fields:
    - timestamp (ISO 8601 format)
    - level (DEBUG, INFO, WARN, ERROR, CRITICAL)
    - correlation_id (UUID)
    - component (service/module name)
    - message (human-readable message)
    - request_id (internal request identifier)
    - user_id (if authenticated)
    - execution_context (additional contextual data)
  And all log entries are valid JSON
  And log parsing never fails due to format issues

Scenario: Contextual log enrichment
  Given different types of operations (tool calls, authentication, caching)
  When log entries are generated
  Then logs include operation-specific context:
    - Tool invocations: tool_name, tool_id, parameters_hash, execution_time
    - Authentication: auth_method, user_id, success/failure
    - A2A operations: server_id, skill_id, task_id, task_state
    - Database operations: query_type, execution_time, affected_rows
    - Cache operations: cache_key, hit/miss, ttl
  And sensitive data is automatically redacted
  And context follows consistent naming conventions

Scenario: Error logging with stack traces
  Given an error occurs during request processing
  When the error is logged
  Then the log entry includes:
    - Complete stack trace in structured format
    - Error code and category
    - Input parameters (sanitized)
    - System state information
    - Recovery actions taken
  And error logs can be easily filtered and analyzed
  And related log entries can be found via correlation ID

Story 3 β€” Performance & Timing Analytics

As a Performance Engineer
I want detailed timing information logged for all operations
So that I can identify performance bottlenecks and optimize system performance.

βœ… Acceptance Criteria
Scenario: Request timing instrumentation
  Given a request is being processed
  When the request flows through different components
  Then timing information is logged for:
    - Total request duration
    - Authentication time
    - Database query execution time
    - Tool invocation duration
    - Cache lookup/store time
    - External API call duration (MCP servers, A2A servers)
  And timing data includes start/end timestamps
  And performance metrics can be aggregated by correlation ID

Scenario: Performance threshold alerts
  Given performance thresholds are configured
  When operations exceed defined thresholds
  Then warning logs are generated with:
    - Operation type and duration
    - Threshold exceeded
    - Performance context (load, concurrent requests)
    - Suggested optimization actions
  And performance alerts can trigger monitoring notifications
  And trending analysis can identify performance degradation

Scenario: Resource utilization logging
  Given system resource monitoring is enabled
  When resource usage changes significantly
  Then logs include:
    - Memory usage per component
    - CPU utilization during operations
    - Database connection pool status
    - Cache memory consumption
    - Active request counts
  And resource logs help with capacity planning
  And resource exhaustion is detected early

Story 4 β€” Security & Audit Logging

As a Security Engineer
I want comprehensive security-focused logging with audit trails
So that I can monitor for security threats and maintain compliance audit trails.

βœ… Acceptance Criteria
Scenario: Authentication and authorization logging
  Given users authenticate and access resources
  When authentication/authorization events occur
  Then security logs capture:
    - Authentication attempts (success/failure)
    - Authorization decisions and policy evaluations
    - JWT token validation results
    - Role and permission changes
    - Session creation and termination
    - Failed access attempts with details
  And security logs are tamper-evident
  And sensitive information is properly redacted

Scenario: Data access audit trail
  Given users access tools, resources, and data
  When data access operations occur
  Then audit logs record:
    - Data accessed (type, identifier, size)
    - Access method and purpose
    - Data modifications or exports
    - Tool invocations with input/output summaries
    - A2A task executions and data flows
  And audit logs support compliance reporting
  And data lineage can be reconstructed from logs

Scenario: Security incident detection
  Given potential security threats or anomalies
  When suspicious patterns are detected
  Then security alert logs include:
    - Anomaly type and severity
    - Attack patterns or indicators
    - Affected resources and users
    - Automatic mitigation actions taken
    - Recommended manual interventions
  And security logs integrate with SIEM systems
  And incident response is accelerated by detailed logging

Story 5 β€” Log Aggregation & Search Interface

As a System Administrator
I want an integrated log search and analysis interface
So that I can quickly find and analyze log data without external tools.

βœ… Acceptance Criteria
Scenario: Built-in log search interface
  Given I access the Admin UI log section
  When I want to search logs
  Then I can:
    - Search by correlation ID to see complete request flows
    - Filter by time range, log level, and component
    - Search by user ID, tool name, or error type
    - Use structured queries on JSON log fields
    - Export search results in multiple formats
  And search results are paginated and performant
  And real-time log streaming is available

Scenario: Log visualization and analytics
  Given log data is available for analysis
  When I view log analytics
  Then I can see:
    - Request volume and patterns over time
    - Error rates and trending
    - Performance metrics and distributions
    - Top errors and their frequencies
    - User activity patterns
    - Tool usage analytics
  And visualizations update in real-time
  And custom dashboards can be created

Scenario: Correlation ID workflow tracing
  Given a correlation ID from a problematic request
  When I trace the workflow
  Then I can see:
    - Complete chronological request flow
    - Service boundaries and handoffs
    - Timing breakdowns by component
    - Error points and recovery attempts
    - Related log entries from all services
  And workflow traces can be shared with team members
  And trace analysis suggests optimization opportunities

Story 6 β€” External Integration & Export

As a Platform Engineer
I want to integrate with external logging and monitoring systems
So that MCP Gateway logs fit into our existing observability infrastructure.

βœ… Acceptance Criteria
Scenario: Multiple log output destinations
  Given external logging systems are configured
  When logs are generated
  Then logs can be sent to:
    - Local files with rotation and compression
    - Syslog servers (RFC 5424 compliant)
    - Elasticsearch/OpenSearch clusters
    - Splunk via HTTP Event Collector
    - Cloud logging services (AWS CloudWatch, Azure Monitor, GCP Logging)
    - Custom webhook endpoints
  And multiple destinations can be active simultaneously
  And log delivery failures are handled gracefully

Scenario: Standards-compliant log formats
  Given integration with external systems
  When logs are exported
  Then logs support standard formats:
    - OpenTelemetry trace format
    - Common Event Format (CEF)
    - GELF (Graylog Extended Log Format)
    - ECS (Elastic Common Schema)
    - Custom JSON schemas
  And log formats can be configured per destination
  And format conversion doesn't lose data

Scenario: Log shipping reliability
  Given external log destinations
  When network issues or destination failures occur
  Then the system:
    - Buffers logs locally during outages
    - Retries failed deliveries with backoff
    - Provides dead letter queues for undeliverable logs
    - Monitors log shipping health and success rates
    - Alerts on persistent delivery failures
  And log shipping doesn't impact application performance
  And log data integrity is maintained

πŸ–ΌοΈ Architecture

1 β€” Structured Logging Architecture

flowchart TD
    subgraph "MCP Gateway Core"
        REQ[Incoming Request] --> CIG[Correlation ID Generator]
        CIG --> CTX[Request Context]
        CTX --> COMP[Gateway Components]
    end
    
    subgraph "Logging Infrastructure"
        COMP --> LM[Log Manager]
        LM --> LF[Log Formatter]
        LF --> LE[Log Enricher]
        LE --> LR[Log Router]
    end
    
    subgraph "Gateway Components"
        COMP --> AUTH[Auth Service]
        COMP --> TOOL[Tool Service]
        COMP --> A2A[A2A Service]
        COMP --> CACHE[Cache Service]
        COMP --> DB[Database Layer]
        
        AUTH --> LM
        TOOL --> LM
        A2A --> LM
        CACHE --> LM
        DB --> LM
    end
    
    subgraph "Log Processing"
        LE --> SEC[Security Filter]
        LE --> PERF[Performance Analyzer]
        LE --> AUDIT[Audit Processor]
        
        SEC --> LR
        PERF --> LR
        AUDIT --> LR
    end
    
    subgraph "Log Destinations"
        LR --> LOCAL[Local Files]
        LR --> SYSLOG[Syslog Server]
        LR --> ELK[Elasticsearch]
        LR --> CLOUD[Cloud Logging]
        LR --> WEBHOOK[Custom Webhooks]
        LR --> METRICS[Metrics Export]
    end
    
    subgraph "Log Analysis"
        LOCAL --> LSI[Log Search Interface]
        ELK --> LSI
        LSI --> DASH[Admin Dashboard]
        LSI --> ALERT[Alert Manager]
        LSI --> VIZ[Visualization Engine]
    end
    
    subgraph "Monitoring Integration"
        METRICS --> PROM[Prometheus]
        ALERT --> NOTIF[Notification System]
        PERF --> APM[APM Integration]
    end
    
    classDef core fill:#e3f2fd,stroke:#1976d2;
    classDef logging fill:#f3e5f5,stroke:#7b1fa2;
    classDef processing fill:#e8f5e8,stroke:#388e3c;
    classDef destinations fill:#fff3e0,stroke:#f57c00;
    classDef analysis fill:#fce4ec,stroke:#c2185b;
    
    class CIG,CTX,COMP core
    class LM,LF,LE,LR logging
    class SEC,PERF,AUDIT processing
    class LOCAL,SYSLOG,ELK,CLOUD,WEBHOOK destinations
    class LSI,DASH,ALERT,VIZ analysis
Loading

2 β€” Correlation ID Flow & Request Tracing

sequenceDiagram
    participant CLIENT as Client
    participant GATEWAY as Gateway
    participant AUTH as Auth Service
    participant TOOL as Tool Service
    participant A2A as A2A Service
    participant EXT as External Server
    participant LOGS as Log System

    CLIENT ->> GATEWAY: HTTP Request
    GATEWAY ->> GATEWAY: Generate/Extract Correlation ID
    GATEWAY ->> LOGS: Log: Request Started (correlation_id, user_agent, path)
    
    GATEWAY ->> AUTH: Authenticate (correlation_id)
    AUTH ->> LOGS: Log: Auth Attempt (correlation_id, user_id, method)
    AUTH ->> AUTH: Validate Credentials
    AUTH ->> LOGS: Log: Auth Success (correlation_id, user_id, duration)
    AUTH -->> GATEWAY: Authentication Result
    
    GATEWAY ->> TOOL: Invoke Tool (correlation_id, tool_name)
    TOOL ->> LOGS: Log: Tool Invocation Start (correlation_id, tool_id, parameters_hash)
    
    alt Tool Type: A2A
        TOOL ->> A2A: Execute A2A Task (correlation_id)
        A2A ->> LOGS: Log: A2A Task Created (correlation_id, server_id, task_id)
        A2A ->> EXT: A2A Protocol Call (X-Correlation-ID header)
        EXT -->> A2A: A2A Response
        A2A ->> LOGS: Log: A2A Task Completed (correlation_id, task_id, duration, status)
        A2A -->> TOOL: A2A Result
    else Tool Type: MCP
        TOOL ->> EXT: MCP Tool Call (correlation_id in context)
        EXT -->> TOOL: MCP Response
    end
    
    TOOL ->> LOGS: Log: Tool Invocation Complete (correlation_id, tool_id, duration, success)
    TOOL -->> GATEWAY: Tool Result
    
    GATEWAY ->> LOGS: Log: Request Completed (correlation_id, status_code, total_duration)
    GATEWAY -->> CLIENT: HTTP Response (X-Correlation-ID header)
Loading

πŸ“ Enhanced Design Sketch

Structured Logging System Architecture:

class StructuredLogger:
    """Main structured logging system with correlation ID support"""
    
    def __init__(self):
        self.log_formatter = JSONLogFormatter()
        self.log_enricher = LogEnricher()
        self.log_router = LogRouter()
        self.correlation_tracker = CorrelationTracker()
        self.performance_tracker = PerformanceTracker()
        self.security_logger = SecurityLogger()
        
    def get_logger(self, component_name: str) -> ComponentLogger:
        """Get a component-specific logger with correlation support"""
        return ComponentLogger(
            component_name=component_name,
            formatter=self.log_formatter,
            enricher=self.log_enricher,
            router=self.log_router,
            correlation_tracker=self.correlation_tracker
        )
    
    def start_request_context(
        self,
        request: Request,
        user_context: Optional[UserContext] = None
    ) -> RequestContext:
        """Initialize request context with correlation ID"""
        
        # Extract or generate correlation ID
        correlation_id = self._extract_or_generate_correlation_id(request)
        
        # Create request context
        context = RequestContext(
            correlation_id=correlation_id,
            request_id=self._generate_request_id(),
            user_id=user_context.user_id if user_context else None,
            start_time=datetime.utcnow(),
            request_path=request.url.path,
            request_method=request.method,
            user_agent=request.headers.get("user-agent"),
            client_ip=self._extract_client_ip(request)
        )
        
        # Store in context manager
        self.correlation_tracker.set_context(context)
        
        # Log request start
        self._log_request_start(context)
        
        return context
    
    def end_request_context(
        self,
        context: RequestContext,
        response: Response
    ):
        """Complete request context and log summary"""
        
        context.end_time = datetime.utcnow()
        context.duration = (context.end_time - context.start_time).total_seconds()
        context.status_code = response.status_code
        context.response_size = len(response.body) if hasattr(response, 'body') else None
        
        # Log request completion
        self._log_request_complete(context)
        
        # Clear context
        self.correlation_tracker.clear_context()
    
    def _extract_or_generate_correlation_id(self, request: Request) -> str:
        """Extract correlation ID from headers or generate new one"""
        
        # Check for existing correlation ID in headers
        correlation_id = request.headers.get("x-correlation-id")
        if correlation_id:
            return correlation_id
        
        # Generate new UUID-based correlation ID
        return str(uuid.uuid4())


class ComponentLogger:
    """Component-specific logger with automatic context enrichment"""
    
    def __init__(
        self,
        component_name: str,
        formatter: JSONLogFormatter,
        enricher: LogEnricher,
        router: LogRouter,
        correlation_tracker: CorrelationTracker
    ):
        self.component_name = component_name
        self.formatter = formatter
        self.enricher = enricher
        self.router = router
        self.correlation_tracker = correlation_tracker
    
    def info(
        self,
        message: str,
        extra_context: Dict[str, Any] = None,
        **kwargs
    ):
        """Log info-level message with context"""
        self._log(LogLevel.INFO, message, extra_context, **kwargs)
    
    def error(
        self,
        message: str,
        error: Exception = None,
        extra_context: Dict[str, Any] = None,
        **kwargs
    ):
        """Log error-level message with exception details"""
        context = extra_context or {}
        
        if error:
            context.update({
                "error_type": type(error).__name__,
                "error_message": str(error),
                "stack_trace": self._format_stack_trace(error)
            })
        
        self._log(LogLevel.ERROR, message, context, **kwargs)
    
    def performance(
        self,
        operation_name: str,
        duration: float,
        extra_context: Dict[str, Any] = None,
        **kwargs
    ):
        """Log performance timing information"""
        context = extra_context or {}
        context.update({
            "operation": operation_name,
            "duration_ms": duration * 1000,
            "performance_category": self._categorize_performance(operation_name, duration)
        })
        
        # Determine log level based on performance thresholds
        level = self._determine_performance_log_level(operation_name, duration)
        
        self._log(level, f"Performance: {operation_name}", context, **kwargs)
    
    def security(
        self,
        event_type: str,
        message: str,
        severity: SecuritySeverity,
        extra_context: Dict[str, Any] = None,
        **kwargs
    ):
        """Log security-related events"""
        context = extra_context or {}
        context.update({
            "security_event_type": event_type,
            "security_severity": severity.value,
            "requires_attention": severity in [SecuritySeverity.HIGH, SecuritySeverity.CRITICAL]
        })
        
        level = self._map_security_severity_to_log_level(severity)
        
        self._log(level, message, context, security=True, **kwargs)
    
    def _log(
        self,
        level: LogLevel,
        message: str,
        extra_context: Dict[str, Any] = None,
        security: bool = False,
        **kwargs
    ):
        """Internal logging method with full context enrichment"""
        
        # Get current request context
        request_context = self.correlation_tracker.get_context()
        
        # Build base log entry
        log_entry = LogEntry(
            timestamp=datetime.utcnow(),
            level=level,
            component=self.component_name,
            message=message,
            correlation_id=request_context.correlation_id if request_context else None,
            request_id=request_context.request_id if request_context else None,
            user_id=request_context.user_id if request_context else None
        )
        
        # Add extra context
        if extra_context:
            log_entry.context.update(extra_context)
        
        # Add any additional kwargs
        log_entry.context.update(kwargs)
        
        # Enrich with system context
        enriched_entry = self.enricher.enrich(log_entry, security=security)
        
        # Format to JSON
        formatted_entry = self.formatter.format(enriched_entry)
        
        # Route to configured destinations
        self.router.route(formatted_entry, level, security)


class JSONLogFormatter:
    """Formats log entries as structured JSON"""
    
    def __init__(self):
        self.sensitive_fields = {
            "password", "token", "secret", "key", "auth", "credential",
            "authorization", "x-api-key", "bearer"
        }
    
    def format(self, log_entry: LogEntry) -> Dict[str, Any]:
        """Format log entry as structured JSON"""
        
        formatted = {
            "@timestamp": log_entry.timestamp.isoformat() + "Z",
            "level": log_entry.level.value,
            "component": log_entry.component,
            "message": log_entry.message,
            "correlation_id": log_entry.correlation_id,
            "request_id": log_entry.request_id,
            "user_id": log_entry.user_id,
            "hostname": socket.gethostname(),
            "process_id": os.getpid(),
            "thread_id": threading.current_thread().ident
        }
        
        # Add context with sensitive data redaction
        if log_entry.context:
            formatted["context"] = self._redact_sensitive_data(log_entry.context)
        
        # Add performance metrics if available
        if hasattr(log_entry, 'performance_metrics'):
            formatted["performance"] = log_entry.performance_metrics
        
        # Add security context if this is a security log
        if hasattr(log_entry, 'security_context'):
            formatted["security"] = log_entry.security_context
        
        return formatted
    
    def _redact_sensitive_data(self, data: Dict[str, Any]) -> Dict[str, Any]:
        """Redact sensitive information from log data"""
        
        redacted = {}
        
        for key, value in data.items():
            key_lower = key.lower()
            
            if any(sensitive in key_lower for sensitive in self.sensitive_fields):
                redacted[key] = "[REDACTED]"
            elif isinstance(value, dict):
                redacted[key] = self._redact_sensitive_data(value)
            elif isinstance(value, list):
                redacted[key] = [
                    self._redact_sensitive_data(item) if isinstance(item, dict) else item
                    for item in value
                ]
            else:
                redacted[key] = value
        
        return redacted


class LogEnricher:
    """Enriches log entries with additional context and metadata"""
    
    def enrich(self, log_entry: LogEntry, security: bool = False) -> LogEntry:
        """Enrich log entry with system and contextual information"""
        
        # Add system information
        log_entry.context.update({
            "version": settings.app_version,
            "environment": settings.environment,
            "service_name": settings.app_name,
            "instance_id": settings.instance_id
        })
        
        # Add memory and performance context
        if settings.log_system_metrics:
            log_entry.context.update({
                "memory_usage_mb": psutil.Process().memory_info().rss / 1024 / 1024,
                "cpu_percent": psutil.Process().cpu_percent(),
                "active_connections": self._get_active_connection_count()
            })
        
        # Add security-specific enrichment
        if security:
            log_entry.security_context = {
                "ip_reputation": self._check_ip_reputation(log_entry.context.get("client_ip")),
                "geo_location": self._get_geo_location(log_entry.context.get("client_ip")),
                "threat_indicators": self._analyze_threat_indicators(log_entry)
            }
        
        return log_entry


class LogRouter:
    """Routes formatted log entries to configured destinations"""
    
    def __init__(self):
        self.destinations = []
        self.buffer_manager = LogBufferManager()
        self.delivery_manager = LogDeliveryManager()
    
    def add_destination(self, destination: LogDestination):
        """Add a log destination"""
        self.destinations.append(destination)
    
    def route(self, formatted_entry: Dict[str, Any], level: LogLevel, security: bool = False):
        """Route log entry to appropriate destinations"""
        
        for destination in self.destinations:
            # Check if destination should receive this log level
            if not destination.should_accept(level, security):
                continue
            
            try:
                # Attempt immediate delivery
                destination.send(formatted_entry)
            except Exception as e:
                # Buffer for retry if immediate delivery fails
                self.buffer_manager.buffer_log(destination, formatted_entry)
                logger.warning(f"Log delivery failed to {destination.name}, buffering: {e}")
        
        # Process any buffered logs
        self.delivery_manager.process_buffered_logs()


class PerformanceTracker:
    """Tracks and analyzes performance metrics across requests"""
    
    def __init__(self):
        self.operation_timings = defaultdict(list)
        self.performance_thresholds = {
            "database_query": 0.1,
            "tool_invocation": 2.0,
            "authentication": 0.5,
            "cache_operation": 0.01,
            "a2a_task": 5.0
        }
    
    @contextmanager
    def track_operation(self, operation_name: str, logger: ComponentLogger):
        """Context manager to track operation performance"""
        
        start_time = time.time()
        
        try:
            yield
        finally:
            duration = time.time() - start_time
            
            # Record timing
            self.operation_timings[operation_name].append(duration)
            
            # Log performance
            logger.performance(operation_name, duration, {
                "threshold_exceeded": duration > self.performance_thresholds.get(operation_name, float('inf'))
            })
    
    def get_performance_summary(self) -> Dict[str, Any]:
        """Get performance summary for analytics"""
        
        summary = {}
        
        for operation, timings in self.operation_timings.items():
            if timings:
                summary[operation] = {
                    "count": len(timings),
                    "avg_duration": statistics.mean(timings),
                    "p50_duration": statistics.median(timings),
                    "p95_duration": statistics.quantiles(timings, n=20)[18] if len(timings) >= 20 else max(timings),
                    "max_duration": max(timings),
                    "min_duration": min(timings)
                }
        
        return summary


class SecurityLogger:
    """Specialized logger for security events and audit trails"""
    
    def __init__(self, component_logger: ComponentLogger):
        self.logger = component_logger
        self.threat_detector = ThreatDetector()
        self.audit_processor = AuditProcessor()
    
    def log_authentication_attempt(
        self,
        user_id: str,
        auth_method: str,
        success: bool,
        client_ip: str,
        additional_context: Dict[str, Any] = None
    ):
        """Log authentication attempts with security analysis"""
        
        context = {
            "user_id": user_id,
            "auth_method": auth_method,
            "success": success,
            "client_ip": client_ip,
            "failed_attempts_recent": self._count_recent_failures(user_id, client_ip),
            **(additional_context or {})
        }
        
        # Analyze for threats
        threat_level = self.threat_detector.analyze_auth_attempt(context)
        
        severity = SecuritySeverity.LOW
        if not success and context["failed_attempts_recent"] > 5:
            severity = SecuritySeverity.HIGH
        elif threat_level > 0.7:
            severity = SecuritySeverity.CRITICAL
        
        self.logger.security(
            "authentication_attempt",
            f"Authentication {'successful' if success else 'failed'} for user {user_id}",
            severity,
            context
        )
    
    def log_data_access(
        self,
        user_id: str,
        resource_type: str,
        resource_id: str,
        access_type: str,
        data_classification: str = None
    ):
        """Log data access for audit trails"""
        
        context = {
            "user_id": user_id,
            "resource_type": resource_type,
            "resource_id": resource_id,
            "access_type": access_type,
            "data_classification": data_classification,
            "audit_required": data_classification in ["sensitive", "confidential", "restricted"]
        }
        
        # Process audit requirements
        self.audit_processor.process_data_access(context)
        
        self.logger.security(
            "data_access",
            f"User {user_id} accessed {resource_type} {resource_id}",
            SecuritySeverity.LOW,
            context
        )


# Integration with existing services
class LoggingMiddleware:
    """FastAPI middleware for automatic request logging"""
    
    def __init__(self, app: FastAPI):
        self.app = app
        self.structured_logger = StructuredLogger()
        
    async def __call__(self, scope, receive, send):
        if scope["type"] != "http":
            await self.app(scope, receive, send)
            return
        
        request = Request(scope, receive)
        
        # Start request context
        context = self.structured_logger.start_request_context(request)
        
        async def send_wrapper(message):
            if message["type"] == "http.response.start":
                # Create response object for logging
                response = Response(status_code=message["status"])
                self.structured_logger.end_request_context(context, response)
            
            await send(message)
        
        await self.app(scope, receive, send_wrapper)

Database Schema Extensions:

class LogEntry(Base):
    """Structured log entry storage for analysis and search"""
    
    __tablename__ = "log_entries"
    
    id: Mapped[str] = mapped_column(String, primary_key=True)
    timestamp: Mapped[datetime] = mapped_column(DateTime(timezone=True), nullable=False)
    correlation_id: Mapped[Optional[str]] = mapped_column(String, index=True)
    request_id: Mapped[Optional[str]] = mapped_column(String, index=True)
    
    # Log metadata
    level: Mapped[str] = mapped_column(String, nullable=False, index=True)
    component: Mapped[str] = mapped_column(String, nullable=False, index=True)
    message: Mapped[str] = mapped_column(Text, nullable=False)
    
    # User and request context
    user_id: Mapped[Optional[str]] = mapped_column(String, index=True)
    client_ip: Mapped[Optional[str]] = mapped_column(String)
    user_agent: Mapped[Optional[str]] = mapped_column(String)
    request_path: Mapped[Optional[str]] = mapped_column(String)
    request_method: Mapped[Optional[str]] = mapped_column(String)
    
    # Performance data
    duration_ms: Mapped[Optional[float]] = mapped_column(Float)
    operation_type: Mapped[Optional[str]] = mapped_column(String, index=True)
    
    # Security context
    is_security_event: Mapped[bool] = mapped_column(Boolean, default=False, index=True)
    security_severity: Mapped[Optional[str]] = mapped_column(String, index=True)
    
    # Structured context data
    context: Mapped[Optional[Dict[str, Any]]] = mapped_column(JSON)
    error_details: Mapped[Optional[Dict[str, Any]]] = mapped_column(JSON)
    performance_metrics: Mapped[Optional[Dict[str, Any]]] = mapped_column(JSON)
    
    # System information
    hostname: Mapped[str] = mapped_column(String, nullable=False)
    process_id: Mapped[int] = mapped_column(Integer, nullable=False)
    version: Mapped[str] = mapped_column(String, nullable=False)
    
    # Indexes for performance
    __table_args__ = (
        Index('idx_log_entries_correlation_time', 'correlation_id', 'timestamp'),
        Index('idx_log_entries_user_time', 'user_id', 'timestamp'),
        Index('idx_log_entries_level_time', 'level', 'timestamp'),
        Index('idx_log_entries_component_time', 'component', 'timestamp'),
        Index('idx_log_entries_security', 'is_security_event', 'security_severity', 'timestamp'),
    )


class PerformanceMetric(Base):
    """Aggregated performance metrics from log analysis"""
    
    __tablename__ = "performance_metrics"
    
    id: Mapped[str] = mapped_column(String, primary_key=True)
    timestamp: Mapped[datetime] = mapped_column(DateTime(timezone=True), nullable=False)
    
    # Metric identification
    operation_type: Mapped[str] = mapped_column(String, nullable=False, index=True)
    component: Mapped[str] = mapped_column(String, nullable=False, index=True)
    
    # Aggregated metrics
    request_count: Mapped[int] = mapped_column(Integer, nullable=False)
    avg_duration_ms: Mapped[float] = mapped_column(Float, nullable=False)
    p50_duration_ms: Mapped[float] = mapped_column(Float, nullable=False)
    p95_duration_ms: Mapped[float] = mapped_column(Float, nullable=False)
    max_duration_ms: Mapped[float] = mapped_column(Float, nullable=False)
    error_count: Mapped[int] = mapped_column(Integer, default=0)
    error_rate: Mapped[float] = mapped_column(Float, default=0.0)
    
    # Time window
    window_start: Mapped[datetime] = mapped_column(DateTime(timezone=True), nullable=False)
    window_end: Mapped[datetime] = mapped_column(DateTime(timezone=True), nullable=False)
    
    __table_args__ = (
        Index('idx_performance_operation_time', 'operation_type', 'window_start'),
        Index('idx_performance_component_time', 'component', 'window_start'),
    )

πŸ”§ Configuration

class StructuredLoggingConfig:
    # === Core Logging ===
    structured_logging_enabled: bool = True               # Enable structured JSON logging
    log_level: str = "INFO"                              # Default log level
    correlation_id_header: str = "X-Correlation-ID"      # Header name for correlation ID
    request_id_generation: bool = True                   # Generate internal request IDs
    
    # === Log Format ===
    json_logging: bool = True                            # Use JSON format for all logs
    timestamp_format: str = "iso8601"                    # Timestamp format (iso8601, epoch, custom)
    timezone: str = "UTC"                                # Timezone for timestamps
    include_hostname: bool = True                        # Include hostname in logs
    include_process_info: bool = True                    # Include PID and thread info
    
    # === Context Enrichment ===
    auto_enrich_context: bool = True                     # Auto-enrich logs with context
    include_system_metrics: bool = False                 # Include memory/CPU in logs
    include_performance_metrics: bool = True             # Include timing information
    redact_sensitive_data: bool = True                   # Auto-redact sensitive fields
    sensitive_field_patterns: List[str] = [              # Patterns for sensitive data
        "password", "token", "secret", "key", "auth", "credential"
    ]
    
    # === Performance Tracking ===
    performance_logging_enabled: bool = True             # Enable performance logging
    performance_thresholds: Dict[str, float] = {         # Operation time thresholds (seconds)
        "database_query": 0.1,
        "tool_invocation": 2.0,
        "authentication": 0.5,
        "cache_operation": 0.01,
        "a2a_task": 5.0,
        "request_total": 10.0
    }
    log_slow_operations: bool = True                     # Log operations exceeding thresholds
    
    # === Security Logging ===
    security_logging_enabled: bool = True                # Enable security event logging
    audit_trail_enabled: bool = True                     # Enable audit trail logging
    failed_auth_threshold: int = 5                       # Failed auth attempts before alert
    log_data_access: bool = True                         # Log data access events
    log_permission_changes: bool = True                  # Log permission/role changes
    
    # === Log Destinations ===
    console_logging: bool = True                         # Log to console/stdout
    file_logging: bool = True                           # Log to files
    file_path: str = "/var/log/mcpgateway/app.log"      # Log file path
    file_rotation_size: str = "100MB"                   # File rotation size
    file_retention_days: int = 30                       # Log file retention
    
    # === External Integrations ===
    syslog_enabled: bool = False                        # Enable syslog output
    syslog_server: str = "localhost:514"                # Syslog server address
    syslog_facility: str = "local0"                     # Syslog facility
    
    elasticsearch_enabled: bool = False                  # Enable Elasticsearch output
    elasticsearch_url: str = "http://localhost:9200"    # Elasticsearch URL
    elasticsearch_index: str = "mcpgateway-logs"        # Elasticsearch index name
    
    webhook_logging_enabled: bool = False               # Enable webhook output
    webhook_url: str = ""                               # Webhook URL for log delivery
    webhook_timeout: int = 10                           # Webhook timeout (seconds)
    
    cloud_logging_enabled: bool = False                 # Enable cloud logging
    cloud_provider: str = "aws"                         # Cloud provider (aws, azure, gcp)
    cloud_config: Dict[str, Any] = {}                   # Provider-specific config
    
    # === Log Search & Analytics ===
    log_search_enabled: bool = True                      # Enable built-in log search
    log_retention_days: int = 90                         # Log retention in database
    log_indexing_enabled: bool = True                    # Enable full-text indexing
    real_time_streaming: bool = True                     # Enable real-time log streaming
    
    # === Performance & Limits ===
    log_buffer_size: int = 1000                         # Log buffer size before flush
    log_flush_interval: int = 10                        # Log flush interval (seconds)
    max_log_entry_size: int = 65536                     # Max size per log entry (bytes)
    async_logging: bool = True                          # Use async logging for performance
    
    # === Alerting ===
    log_alerting_enabled: bool = True                   # Enable log-based alerting
    error_rate_threshold: float = 0.05                  # Error rate threshold for alerts
    performance_degradation_threshold: float = 2.0      # Performance degradation multiplier
    alert_webhook_url: str = ""                         # Webhook for alerts
    
    # === Compliance ===
    gdpr_compliance: bool = True                        # Enable GDPR compliance features
    data_retention_policy: str = "90_days"              # Data retention policy
    log_encryption_at_rest: bool = False                # Encrypt logs at rest
    log_signing_enabled: bool = False                   # Enable log integrity signing

πŸ“± Admin UI Integration

Log Search & Analysis Interface

<!-- Structured Logging Dashboard -->
<div id="logging-panel" class="tab-panel">
  <div class="logging-header">
    <h2 class="text-2xl font-bold">Structured Logs & Analytics</h2>
    <p class="text-gray-600">Search, analyze, and monitor system logs with correlation tracking</p>
    
    <!-- Log Statistics -->
    <div class="log-stats grid grid-cols-5 gap-4 my-4">
      <div class="stat-card">
        <h3>Log Entries Today</h3>
        <span class="stat-number">2.4M</span>
        <span class="stat-change">+15% vs yesterday</span>
      </div>
      <div class="stat-card">
        <h3>Error Rate</h3>
        <span class="stat-number">0.08%</span>
        <span class="stat-status normal">Normal</span>
      </div>
      <div class="stat-card">
        <h3>Avg Response Time</h3>
        <span class="stat-number">284ms</span>
        <span class="stat-change">-12ms from yesterday</span>
      </div>
      <div class="stat-card">
        <h3>Active Correlations</h3>
        <span class="stat-number">1,247</span>
        <span class="stat-note">concurrent requests</span>
      </div>
      <div class="stat-card">
        <h3>Security Events</h3>
        <span class="stat-number">23</span>
        <span class="stat-status attention">Needs attention</span>
      </div>
    </div>
  </div>
  
  <!-- Log Search Interface -->
  <div class="log-search-section">
    <div class="search-controls">
      <div class="search-input-group">
        <input type="text" id="log-search-query" placeholder="Search logs by message, correlation ID, user ID..." />
        <button onclick="searchLogs()" class="btn btn-primary">Search</button>
        <button onclick="clearLogSearch()" class="btn btn-secondary">Clear</button>
      </div>
      
      <div class="search-filters">
        <select id="log-level-filter">
          <option value="">All Levels</option>
          <option value="DEBUG">Debug</option>
          <option value="INFO">Info</option>
          <option value="WARN">Warning</option>
          <option value="ERROR">Error</option>
          <option value="CRITICAL">Critical</option>
        </select>
        
        <select id="component-filter">
          <option value="">All Components</option>
          <option value="auth_service">Authentication</option>
          <option value="tool_service">Tool Service</option>
          <option value="a2a_service">A2A Service</option>
          <option value="cache_service">Cache Service</option>
          <option value="database">Database</option>
        </select>
        
        <input type="datetime-local" id="start-time-filter" />
        <input type="datetime-local" id="end-time-filter" />
        
        <label>
          <input type="checkbox" id="security-events-only" />
          Security Events Only
        </label>
        
        <label>
          <input type="checkbox" id="errors-only" />
          Errors Only
        </label>
      </div>
    </div>
    
    <!-- Quick Search Templates -->
    <div class="quick-searches">
      <h4>Quick Searches</h4>
      <div class="quick-search-buttons">
        <button onclick="quickSearch('recent-errors')" class="btn btn-sm btn-outline">Recent Errors</button>
        <button onclick="quickSearch('slow-operations')" class="btn btn-sm btn-outline">Slow Operations</button>
        <button onclick="quickSearch('auth-failures')" class="btn btn-sm btn-outline">Auth Failures</button>
        <button onclick="quickSearch('security-alerts')" class="btn btn-sm btn-outline">Security Alerts</button>
        <button onclick="quickSearch('high-volume-users')" class="btn btn-sm btn-outline">High Volume Users</button>
      </div>
    </div>
  </div>
  
  <!-- Log Results Display -->
  <div class="log-results-section">
    <div class="results-header">
      <h3>Search Results</h3>
      <div class="results-controls">
        <span id="results-count">Showing 0 results</span>
        <button onclick="exportLogResults()" class="btn btn-sm btn-secondary">Export</button>
        <button onclick="toggleRealTimeMode()" class="btn btn-sm btn-secondary" id="realtime-toggle">
          Enable Real-time
        </button>
      </div>
    </div>
    
    <div class="log-entries" id="log-entries-container">
      <!-- Log entries populated dynamically -->
    </div>
    
    <!-- Pagination -->
    <div class="log-pagination">
      <button onclick="loadLogPage(currentPage - 1)">Previous</button>
      <span>Page <span id="log-current-page">1</span> of <span id="log-total-pages">1</span></span>
      <button onclick="loadLogPage(currentPage + 1)">Next</button>
    </div>
  </div>
  
  <!-- Correlation ID Tracing -->
  <div class="correlation-tracing-section">
    <h3>Correlation ID Tracing</h3>
    <div class="tracing-input">
      <input type="text" id="correlation-id-input" placeholder="Enter correlation ID to trace request flow..." />
      <button onclick="traceCorrelationId()" class="btn btn-primary">Trace Request</button>
    </div>
    
    <div id="correlation-trace-results" class="trace-results hidden">
      <!-- Trace timeline populated dynamically -->
    </div>
  </div>
</div>

<!-- Log Entry Detail Modal -->
<div id="log-entry-detail-modal" class="modal">
  <div class="modal-content log-entry-detail">
    <div class="log-entry-header">
      <h3>Log Entry Details</h3>
      <div class="log-entry-meta">
        <span class="timestamp"></span>
        <span class="level-badge"></span>
        <span class="component-badge"></span>
      </div>
    </div>
    
    <div class="log-entry-content">
      <div class="log-field">
        <label>Message:</label>
        <div class="message-content"></div>
      </div>
      
      <div class="log-field">
        <label>Correlation ID:</label>
        <div class="correlation-id">
          <span class="correlation-value"></span>
          <button onclick="traceFromModal()" class="btn btn-sm btn-secondary">Trace Flow</button>
        </div>
      </div>
      
      <div class="log-field">
        <label>Context:</label>
        <pre class="context-json"></pre>
      </div>
      
      <div class="log-field performance-data hidden">
        <label>Performance Data:</label>
        <div class="performance-metrics"></div>
      </div>
      
      <div class="log-field error-data hidden">
        <label>Error Details:</label>
        <pre class="error-details"></pre>
      </div>
    </div>
  </div>
</div>

Structured Logging JavaScript

class StructuredLoggingManager {
    constructor() {
        this.currentPage = 1;
        this.pageSize = 50;
        this.realTimeMode = false;
        this.searchFilters = {};
        this.realTimeEventSource = null;
    }
    
    async searchLogs() {
        const query = document.getElementById('log-search-query').value;
        const filters = this.collectSearchFilters();
        
        try {
            const response = await fetch('/admin/logs/search', {
                method: 'POST',
                headers: { 'Content-Type': 'application/json' },
                body: JSON.stringify({
                    query: query,
                    filters: filters,
                    page: this.currentPage,
                    page_size: this.pageSize
                })
            });
            
            const results = await response.json();
            this.displayLogResults(results);
            
        } catch (error) {
            this.showError('Failed to search logs: ' + error.message);
        }
    }
    
    collectSearchFilters() {
        return {
            level: document.getElementById('log-level-filter').value,
            component: document.getElementById('component-filter').value,
            start_time: document.getElementById('start-time-filter').value,
            end_time: document.getElementById('end-time-filter').value,
            security_events_only: document.getElementById('security-events-only').checked,
            errors_only: document.getElementById('errors-only').checked
        };
    }
    
    displayLogResults(results) {
        const container = document.getElementById('log-entries-container');
        
        container.innerHTML = results.entries.map(entry => `
            <div class="log-entry" data-entry-id="${entry.id}">
                <div class="log-entry-header">
                    <span class="timestamp">${new Date(entry.timestamp).toLocaleString()}</span>
                    <span class="level-badge level-${entry.level.toLowerCase()}">${entry.level}</span>
                    <span class="component-badge">${entry.component}</span>
                    ${entry.correlation_id ? `<span class="correlation-badge" onclick="traceCorrelationId('${entry.correlation_id}')">${entry.correlation_id}</span>` : ''}
                </div>
                
                <div class="log-entry-message" onclick="viewLogDetails('${entry.id}')">
                    ${entry.message}
                </div>
                
                <div class="log-entry-context">
                    ${entry.user_id ? `<span class="context-item">User: ${entry.user_id}</span>` : ''}
                    ${entry.duration_ms ? `<span class="context-item">Duration: ${entry.duration_ms}ms</span>` : ''}
                    ${entry.operation_type ? `<span class="context-item">Op: ${entry.operation_type}</span>` : ''}
                    ${entry.is_security_event ? '<span class="context-item security">Security Event</span>' : ''}
                </div>
            </div>
        `).join('');
        
        // Update pagination
        document.getElementById('results-count').textContent = 
            `Showing ${results.entries.length} of ${results.total_count} results`;
        document.getElementById('log-current-page').textContent = this.currentPage;
        document.getElementById('log-total-pages').textContent = results.total_pages;
    }
    
    async viewLogDetails(entryId) {
        try {
            const response = await fetch(`/admin/logs/${entryId}`);
            const entry = await response.json();
            
            this.populateLogDetailModal(entry);
            this.openModal('log-entry-detail-modal');
            
        } catch (error) {
            this.showError('Failed to load log details: ' + error.message);
        }
    }
    
    populateLogDetailModal(entry) {
        // Basic entry info
        document.querySelector('.timestamp').textContent = 
            new Date(entry.timestamp).toLocaleString();
        document.querySelector('.level-badge').textContent = entry.level;
        document.querySelector('.level-badge').className = `level-badge level-${entry.level.toLowerCase()}`;
        document.querySelector('.component-badge').textContent = entry.component;
        
        // Message content
        document.querySelector('.message-content').textContent = entry.message;
        
        // Correlation ID
        document.querySelector('.correlation-value').textContent = entry.correlation_id || 'None';
        
        // Context data
        document.querySelector('.context-json').textContent = 
            JSON.stringify(entry.context || {}, null, 2);
        
        // Performance data
        if (entry.performance_metrics) {
            document.querySelector('.performance-data').classList.remove('hidden');
            document.querySelector('.performance-metrics').innerHTML = 
                this.formatPerformanceMetrics(entry.performance_metrics);
        }
        
        // Error details
        if (entry.error_details) {
            document.querySelector('.error-data').classList.remove('hidden');
            document.querySelector('.error-details').textContent = 
                JSON.stringify(entry.error_details, null, 2);
        }
    }
    
    async traceCorrelationId(correlationId = null) {
        const corrId = correlationId || document.getElementById('correlation-id-input').value;
        
        if (!corrId) {
            this.showError('Please enter a correlation ID');
            return;
        }
        
        try {
            const response = await fetch(`/admin/logs/trace/${corrId}`);
            const trace = await response.json();
            
            this.displayCorrelationTrace(trace);
            
        } catch (error) {
            this.showError('Failed to trace correlation ID: ' + error.message);
        }
    }
    
    displayCorrelationTrace(trace) {
        const container = document.getElementById('correlation-trace-results');
        
        container.innerHTML = `
            <div class="trace-header">
                <h4>Request Flow for ${trace.correlation_id}</h4>
                <div class="trace-summary">
                    <span>Total Duration: ${trace.total_duration_ms}ms</span>
                    <span>Components: ${trace.components.length}</span>
                    <span>Log Entries: ${trace.entries.length}</span>
                </div>
            </div>
            
            <div class="trace-timeline">
                ${trace.entries.map((entry, index) => `
                    <div class="trace-entry">
                        <div class="trace-time">${new Date(entry.timestamp).toLocaleTimeString()}</div>
                        <div class="trace-component">${entry.component}</div>
                        <div class="trace-message">${entry.message}</div>
                        <div class="trace-duration">
                            ${entry.duration_ms ? `${entry.duration_ms}ms` : ''}
                        </div>
                    </div>
                `).join('')}
            </div>
        `;
        
        container.classList.remove('hidden');
    }
    
    toggleRealTimeMode() {
        this.realTimeMode = !this.realTimeMode;
        const button = document.getElementById('realtime-toggle');
        
        if (this.realTimeMode) {
            button.textContent = 'Disable Real-time';
            this.startRealTimeLogging();
        } else {
            button.textContent = 'Enable Real-time';
            this.stopRealTimeLogging();
        }
    }
    
    startRealTimeLogging() {
        this.realTimeEventSource = new EventSource('/admin/logs/stream');
        
        this.realTimeEventSource.onmessage = (event) => {
            const logEntry = JSON.parse(event.data);
            this.addLogEntryToTop(logEntry);
        };
        
        this.realTimeEventSource.onerror = (error) => {
            console.error('Real-time logging error:', error);
            this.stopRealTimeLogging();
        };
    }
    
    stopRealTimeLogging() {
        if (this.realTimeEventSource) {
            this.realTimeEventSource.close();
            this.realTimeEventSource = null;
        }
    }
    
    addLogEntryToTop(entry) {
        const container = document.getElementById('log-entries-container');
        const entryHtml = this.createLogEntryHtml(entry);
        
        container.insertAdjacentHTML('afterbegin', entryHtml);
        
        // Remove entries beyond page size to prevent memory issues
        const entries = container.querySelectorAll('.log-entry');
        if (entries.length > this.pageSize) {
            entries[entries.length - 1].remove();
        }
    }
    
    async quickSearch(searchType) {
        const searchQueries = {
            'recent-errors': {
                query: '',
                filters: { level: 'ERROR', start_time: this.getTimeAgo(1, 'hours') }
            },
            'slow-operations': {
                query: 'duration_ms:>2000',
                filters: { start_time: this.getTimeAgo(1, 'hours') }
            },
            'auth-failures': {
                query: 'authentication failed',
                filters: { component: 'auth_service', start_time: this.getTimeAgo(6, 'hours') }
            },
            'security-alerts': {
                query: '',
                filters: { security_events_only: true, start_time: this.getTimeAgo(24, 'hours') }
            },
            'high-volume-users': {
                query: 'user_id:* AND count:>100',
                filters: { start_time: this.getTimeAgo(1, 'hours') }
            }
        };
        
        const searchConfig = searchQueries[searchType];
        if (searchConfig) {
            document.getElementById('log-search-query').value = searchConfig.query;
            this.applySearchFilters(searchConfig.filters);
            await this.searchLogs();
        }
    }
    
    formatPerformanceMetrics(metrics) {
        return Object.entries(metrics).map(([key, value]) => 
            `<div class="metric-item">
                <span class="metric-name">${key}:</span>
                <span class="metric-value">${value}</span>
            </div>`
        ).join('');
    }
    
    getTimeAgo(amount, unit) {
        const now = new Date();
        const units = {
            hours: 60 * 60 * 1000,
            days: 24 * 60 * 60 * 1000
        };
        
        return new Date(now.getTime() - (amount * units[unit])).toISOString();
    }
}

// Initialize structured logging manager
const loggingManager = new StructuredLoggingManager();

// Auto-load recent logs on page load
document.addEventListener('DOMContentLoaded', () => {
    loggingManager.quickSearch('recent-errors');
});

πŸš€ Performance Expectations

Structured Logging Performance Metrics

Logging Operations Performance:
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚ Operation               β”‚ Target Time  β”‚ Max Acceptable β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚ Log entry creation      β”‚ <1ms         β”‚ 5ms            β”‚
β”‚ JSON formatting         β”‚ <0.5ms       β”‚ 2ms            β”‚
β”‚ Log search query        β”‚ <500ms       β”‚ 2 seconds      β”‚
β”‚ Correlation ID trace    β”‚ <1 second    β”‚ 5 seconds      β”‚
β”‚ Real-time log streaming β”‚ <100ms delay β”‚ 500ms delay    β”‚
β”‚ Log export operation    β”‚ <10 seconds  β”‚ 60 seconds     β”‚
β”‚ Performance analytics   β”‚ <3 seconds   β”‚ 15 seconds     β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

Logging System Scalability:
- Support for 1M+ log entries per hour
- 100+ concurrent log searches
- Real-time streaming to 50+ concurrent clients
- Log retention for 90+ days with efficient querying
- Sub-second correlation ID tracing across 10K+ entries

Logging Overhead:
- Application performance impact: <2%
- Memory overhead per request: <1KB
- Disk space efficiency: 70% compression ratio
- Network bandwidth for external destinations: Configurable buffering

🧭 Implementation Roadmap

Phase 1: Core Structured Logging (Weeks 1-3)

  • Design and implement structured logging framework
  • Create StructuredLogger and ComponentLogger classes
  • Implement correlation ID generation and propagation
  • Build JSON log formatter with sensitive data redaction
  • Create basic log routing to console and files

Phase 2: Context & Performance Tracking (Weeks 4-6)

  • Implement request context management
  • Build performance tracking and timing instrumentation
  • Create log enrichment with system and contextual data
  • Add FastAPI middleware for automatic request logging
  • Implement configurable performance thresholds and alerting

Phase 3: Security & Audit Logging (Weeks 7-9)

  • Build SecurityLogger with threat detection
  • Implement comprehensive audit trail logging
  • Create authentication and authorization event logging
  • Add data access logging with classification tracking
  • Build security incident detection and alerting

Phase 4: Search & Analysis Interface (Weeks 10-12)

  • Create log database schema and indexing
  • Build log search API with filtering and pagination
  • Implement correlation ID tracing functionality
  • Create Admin UI log search and analysis interface
  • Add real-time log streaming and visualization

Phase 5: External Integration & Advanced Features (Weeks 13-15)

  • Implement external log destination support
  • Build log shipping with reliability and buffering
  • Add standards-compliant log format support
  • Create log analytics and reporting dashboards
  • Implement log-based alerting and notification system

🎯 Success Criteria

  • Zero application performance impact from logging overhead in production
  • 100% correlation ID coverage across all request flows
  • Sub-second log search for queries across 1M+ entries
  • Real-time log streaming with <100ms latency
  • 99.9% log delivery reliability to external destinations
  • Complete audit trail for all authentication and data access events
  • Automated threat detection with <5 minute alert time
  • Comprehensive request tracing enabling root cause analysis in <5 minutes

πŸ”— Integration Points

Existing System Integration

  • Authentication: Enhanced logging for all auth events and security analysis
  • Tool Services: Performance tracking and error analysis for tool invocations
  • A2A Integration: Comprehensive logging for A2A task lifecycle and performance
  • Marketplace: User activity tracking and analytics for marketplace usage
  • Admin UI: Integrated log search and analysis interface

External System Integration

  • Monitoring Systems: Prometheus metrics export and APM integration
  • SIEM Platforms: Security event forwarding and threat intelligence
  • Log Aggregation: Elasticsearch, Splunk, and cloud logging service integration
  • Alerting Systems: Integration with PagerDuty, Slack, and custom webhooks

🧩 Additional Notes

  • πŸ” Observability: Complete request tracing enables rapid debugging and optimization
  • πŸ›‘οΈ Security: Comprehensive audit trails and threat detection enhance security posture
  • πŸ“Š Analytics: Rich performance data enables data-driven optimization decisions
  • 🏒 Enterprise Ready: Audit logging and compliance features meet enterprise requirements
  • ⚑ Performance: Async logging and efficient routing minimize application impact
  • πŸ”§ Flexible: Multiple output destinations and configurable formats support diverse environments
  • πŸ“ˆ Scalable: Designed to handle high-volume logging requirements efficiently
  • 🎯 Actionable: Smart alerting and analytics provide actionable insights for operations teams

Metadata

Metadata

Assignees

No one assigned

    Labels

    enhancementNew feature or requestobservabilityObservability, logging, monitoringpythonPython / backend development (FastAPI)triageIssues / Features awaiting triage

    Projects

    No projects

    Milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions