|
| 1 | +#!/usr/bin/python |
| 2 | +# -*- coding: utf-8 -*- |
| 3 | +import csv |
| 4 | +import cv2 |
| 5 | +import math |
| 6 | +import numpy as np |
| 7 | +import threading |
| 8 | +import time |
| 9 | +import carla |
| 10 | +from os import path |
| 11 | +from albumentations import ( |
| 12 | + Compose, Normalize, RandomRain, RandomBrightness, RandomShadow, RandomSnow, RandomFog, RandomSunFlare |
| 13 | +) |
| 14 | +from utils.constants import PRETRAINED_MODELS_DIR, ROOT_PATH |
| 15 | +from utils.logger import logger |
| 16 | +from traceback import print_exc |
| 17 | + |
| 18 | +PRETRAINED_MODELS = ROOT_PATH + '/' + PRETRAINED_MODELS_DIR + 'carla_tf_models/' |
| 19 | + |
| 20 | +from tensorflow.python.framework.errors_impl import NotFoundError |
| 21 | +from tensorflow.python.framework.errors_impl import UnimplementedError |
| 22 | +import tensorflow as tf |
| 23 | +gpus = tf.config.experimental.list_physical_devices('GPU') |
| 24 | +for gpu in gpus: |
| 25 | + tf.config.experimental.set_memory_growth(gpu, True) |
| 26 | + |
| 27 | +class Brain: |
| 28 | + |
| 29 | + def __init__(self, sensors, actuators, handler, model, config=None): |
| 30 | + self.camera_0 = sensors.get_camera('camera_0') |
| 31 | + self.camera_1 = sensors.get_camera('camera_1') |
| 32 | + self.camera_2 = sensors.get_camera('camera_2') |
| 33 | + self.camera_3 = sensors.get_camera('camera_3') |
| 34 | + |
| 35 | + self.cameras_first_images = [] |
| 36 | + |
| 37 | + self.pose = sensors.get_pose3d('pose3d_0') |
| 38 | + |
| 39 | + self.bird_eye_view = sensors.get_bird_eye_view('bird_eye_view_0') |
| 40 | + |
| 41 | + self.motors = actuators.get_motor('motors_0') |
| 42 | + self.handler = handler |
| 43 | + self.config = config |
| 44 | + self.inference_times = [] |
| 45 | + self.gpu_inference = True if tf.test.gpu_device_name() else False |
| 46 | + |
| 47 | + self.threshold_image = np.zeros((640, 360, 3), np.uint8) |
| 48 | + self.color_image = np.zeros((640, 360, 3), np.uint8) |
| 49 | + ''' |
| 50 | + self.lock = threading.Lock() |
| 51 | + self.threshold_image_lock = threading.Lock() |
| 52 | + self.color_image_lock = threading.Lock() |
| 53 | + ''' |
| 54 | + self.cont = 0 |
| 55 | + self.iteration = 0 |
| 56 | + |
| 57 | + # self.previous_timestamp = 0 |
| 58 | + # self.previous_image = 0 |
| 59 | + |
| 60 | + self.previous_commanded_throttle = None |
| 61 | + self.previous_commanded_steer = None |
| 62 | + self.previous_commanded_brake = None |
| 63 | + self.suddenness_distance = [] |
| 64 | + |
| 65 | + client = carla.Client('localhost', 2000) |
| 66 | + client.set_timeout(10.0) # seconds |
| 67 | + world = client.get_world() |
| 68 | + |
| 69 | + time.sleep(5) |
| 70 | + self.vehicle = world.get_actors().filter('vehicle.*')[0] |
| 71 | + |
| 72 | + if model: |
| 73 | + if not path.exists(PRETRAINED_MODELS + model): |
| 74 | + logger.info("File " + model + " cannot be found in " + PRETRAINED_MODELS) |
| 75 | + logger.info("** Load TF model **") |
| 76 | + self.net = tf.keras.models.load_model(PRETRAINED_MODELS + model) |
| 77 | + logger.info("** Loaded TF model **") |
| 78 | + else: |
| 79 | + logger.info("** Brain not loaded **") |
| 80 | + logger.info("- Models path: " + PRETRAINED_MODELS) |
| 81 | + logger.info("- Model: " + str(model)) |
| 82 | + |
| 83 | + self.previous_speed = 0 |
| 84 | + |
| 85 | + self.image_1 = 0 |
| 86 | + self.image_2 = 0 |
| 87 | + self.image_3 = 0 |
| 88 | + |
| 89 | + |
| 90 | + def update_frame(self, frame_id, data): |
| 91 | + """Update the information to be shown in one of the GUI's frames. |
| 92 | +
|
| 93 | + Arguments: |
| 94 | + frame_id {str} -- Id of the frame that will represent the data |
| 95 | + data {*} -- Data to be shown in the frame. Depending on the type of frame (rgbimage, laser, pose3d, etc) |
| 96 | + """ |
| 97 | + if data.shape[0] != data.shape[1]: |
| 98 | + if data.shape[0] > data.shape[1]: |
| 99 | + difference = data.shape[0] - data.shape[1] |
| 100 | + extra_left, extra_right = int(difference/2), int(difference/2) |
| 101 | + extra_top, extra_bottom = 0, 0 |
| 102 | + else: |
| 103 | + difference = data.shape[1] - data.shape[0] |
| 104 | + extra_left, extra_right = 0, 0 |
| 105 | + extra_top, extra_bottom = int(difference/2), int(difference/2) |
| 106 | + |
| 107 | + |
| 108 | + data = np.pad(data, ((extra_top, extra_bottom), (extra_left, extra_right), (0, 0)), mode='constant', constant_values=0) |
| 109 | + |
| 110 | + self.handler.update_frame(frame_id, data) |
| 111 | + |
| 112 | + def update_pose(self, pose_data): |
| 113 | + self.handler.update_pose3d(pose_data) |
| 114 | + |
| 115 | + def execute(self): |
| 116 | + image = self.camera_0.getImage().data |
| 117 | + image_1 = self.camera_1.getImage().data |
| 118 | + image_2 = self.camera_2.getImage().data |
| 119 | + image_3 = self.camera_3.getImage().data |
| 120 | + |
| 121 | + bird_eye_view_1 = self.bird_eye_view.getImage(self.vehicle) |
| 122 | + |
| 123 | + if self.cameras_first_images == []: |
| 124 | + self.cameras_first_images.append(image) |
| 125 | + self.cameras_first_images.append(image_1) |
| 126 | + self.cameras_first_images.append(image_2) |
| 127 | + self.cameras_first_images.append(image_3) |
| 128 | + self.cameras_first_images.append(bird_eye_view_1) |
| 129 | + |
| 130 | + self.cameras_last_images = [ |
| 131 | + image, |
| 132 | + image_1, |
| 133 | + image_2, |
| 134 | + image_3, |
| 135 | + bird_eye_view_1 |
| 136 | + ] |
| 137 | + |
| 138 | + self.update_frame('frame_1', image_1) |
| 139 | + self.update_frame('frame_2', image_2) |
| 140 | + self.update_frame('frame_3', image_3) |
| 141 | + |
| 142 | + self.update_frame('frame_0', bird_eye_view_1) |
| 143 | + |
| 144 | + self.update_pose(self.pose.getPose3d()) |
| 145 | + |
| 146 | + image_shape=(50, 150) |
| 147 | + img_base = cv2.resize(bird_eye_view_1, image_shape) |
| 148 | + |
| 149 | + AUGMENTATIONS_TEST = Compose([ |
| 150 | + Normalize() |
| 151 | + ]) |
| 152 | + image = AUGMENTATIONS_TEST(image=img_base) |
| 153 | + img = image["image"] |
| 154 | + |
| 155 | + if type(self.image_1) is int: |
| 156 | + self.image_1 = img |
| 157 | + if type(self.image_2) is int: |
| 158 | + self.image_2 = img |
| 159 | + else: |
| 160 | + self.image_1 = self.image_2 |
| 161 | + self.image_2 = self.image_1 |
| 162 | + self.image_3 = img |
| 163 | + |
| 164 | + velocity_dim = np.full((150, 50), self.previous_speed/30) |
| 165 | + self.image_1 = np.dstack((self.image_1, velocity_dim)) |
| 166 | + self.image_2 = np.dstack((self.image_2, velocity_dim)) |
| 167 | + self.image_3 = np.dstack((self.image_3, velocity_dim)) |
| 168 | + |
| 169 | + img = [self.image_3, self.image_2 , self.image_1] |
| 170 | + |
| 171 | + img = np.expand_dims(img, axis=0) |
| 172 | + start_time = time.time() |
| 173 | + try: |
| 174 | + prediction = self.net.predict(img, verbose=0) |
| 175 | + self.inference_times.append(time.time() - start_time) |
| 176 | + throttle = prediction[0][0] |
| 177 | + steer = prediction[0][1] * (1 - (-1)) + (-1) |
| 178 | + break_command = prediction[0][2] |
| 179 | + speed = self.vehicle.get_velocity() |
| 180 | + vehicle_speed = 3.6 * math.sqrt(speed.x**2 + speed.y**2 + speed.z**2) |
| 181 | + self.previous_speed = vehicle_speed |
| 182 | + |
| 183 | + if vehicle_speed > 300: |
| 184 | + self.motors.sendThrottle(0) |
| 185 | + self.motors.sendSteer(steer) |
| 186 | + self.motors.sendBrake(0) |
| 187 | + else: |
| 188 | + if vehicle_speed < 2: |
| 189 | + self.motors.sendThrottle(1.0) |
| 190 | + self.motors.sendSteer(0.0) |
| 191 | + self.motors.sendBrake(0) |
| 192 | + else: |
| 193 | + self.motors.sendThrottle(throttle) |
| 194 | + self.motors.sendSteer(steer) |
| 195 | + self.motors.sendBrake(0) |
| 196 | + |
| 197 | + if self.previous_commanded_throttle != None: |
| 198 | + a = np.array((throttle, steer, break_command)) |
| 199 | + b = np.array((self.previous_commanded_throttle, self.previous_commanded_steer, self.previous_commanded_brake)) |
| 200 | + distance = np.linalg.norm(a - b) |
| 201 | + self.suddenness_distance.append(distance) |
| 202 | + |
| 203 | + self.previous_commanded_throttle = throttle |
| 204 | + self.previous_commanded_steer = steer |
| 205 | + self.previous_commanded_brake = break_command |
| 206 | + except NotFoundError as ex: |
| 207 | + logger.info('Error inside brain: NotFoundError!') |
| 208 | + logger.warning(type(ex).__name__) |
| 209 | + print_exc() |
| 210 | + raise Exception(ex) |
| 211 | + except UnimplementedError as ex: |
| 212 | + logger.info('Error inside brain: UnimplementedError!') |
| 213 | + logger.warning(type(ex).__name__) |
| 214 | + print_exc() |
| 215 | + raise Exception(ex) |
| 216 | + except Exception as ex: |
| 217 | + logger.info('Error inside brain: Exception!') |
| 218 | + logger.warning(type(ex).__name__) |
| 219 | + print_exc() |
| 220 | + raise Exception(ex) |
| 221 | + |
| 222 | + |
| 223 | + |
| 224 | + |
| 225 | + |
0 commit comments