@@ -51,22 +51,22 @@ import MultivariateOrthogonalPolynomials: tri_forwardrecurrence, grid, TriangleR
51
51
@testset " function" begin
52
52
P = JacobiTriangle ()
53
53
𝐱 = SVector (0.1 ,0.2 )
54
- c = PseudoBlockVector ([1 ; Zeros (∞)], (axes (P,2 ),))
54
+ c = BlockedVector ([1 ; Zeros (∞)], (axes (P,2 ),))
55
55
f = P* c
56
56
@test MemoryLayout (f) isa ExpansionLayout
57
57
@test @inferred (f[𝐱]) == 1.0
58
- c = PseudoBlockVector ([1 : 3 ; Zeros (∞)], (axes (P,2 ),))
58
+ c = BlockedVector ([1 : 3 ; Zeros (∞)], (axes (P,2 ),))
59
59
f = P* c
60
60
@test f[𝐱] ≈ P[𝐱,1 : 3 ]' * (1 : 3 )
61
- c = PseudoBlockVector ([1 : 6 ; Zeros (∞)], (axes (P,2 ),))
61
+ c = BlockedVector ([1 : 6 ; Zeros (∞)], (axes (P,2 ),))
62
62
f = P* c
63
63
@test f[𝐱] ≈ P[𝐱,1 : 6 ]' * (1 : 6 )
64
64
65
- c = PseudoBlockVector ([randn (5050 ); Zeros (∞)], (axes (P,2 ),))
65
+ c = BlockedVector ([randn (5050 ); Zeros (∞)], (axes (P,2 ),))
66
66
f = P* c
67
67
@test f[𝐱] ≈ P[𝐱,1 : 5050 ]' * c[1 : 5050 ]
68
68
69
- c = PseudoBlockVector ([1 : 10 ; zeros (∞)], (axes (P,2 ),))
69
+ c = BlockedVector ([1 : 10 ; zeros (∞)], (axes (P,2 ),))
70
70
f = P* c
71
71
𝐱 = SVector (0.1 ,0.2 )
72
72
@test f[𝐱] ≈ dot (P[𝐱,1 : 10 ],1 : 10 )
@@ -98,7 +98,7 @@ import MultivariateOrthogonalPolynomials: tri_forwardrecurrence, grid, TriangleR
98
98
99
99
@testset " relation with transform" begin
100
100
P = JacobiTriangle ()
101
- c = PseudoBlockVector ([1 : 10 ; zeros (∞)], (axes (P,2 ),))
101
+ c = BlockedVector ([1 : 10 ; zeros (∞)], (axes (P,2 ),))
102
102
f = P* c
103
103
N = 5
104
104
P_N = P[:,Block .(Base. OneTo (N))]
@@ -375,7 +375,7 @@ import MultivariateOrthogonalPolynomials: tri_forwardrecurrence, grid, TriangleR
375
375
X = P \ (x .* P)
376
376
Y = P \ (y .* P)
377
377
378
- P_ex = PseudoBlockVector {Float64} (undef, 1 : 5 )
378
+ P_ex = BlockedVector {Float64} (undef, 1 : 5 )
379
379
for n = 0 : 4 , k= 0 : n
380
380
P_ex[Block (n+ 1 )[k+ 1 ]] = p (n,k,1 ,0 ,0 ,0.1 ,0.2 )
381
381
end
0 commit comments