Skip to content

Xoroshiro128Plus slows down relative to Base MT with increasing sample size #68

@robsmith11

Description

@robsmith11

From what I've read, Xoroshiro is often suggested as the fastest RNG with decent random properties. Using the implementation here, I do see it beating Base's MT for small samples, but getting relatively slower as the sample size passes ~100:

julia> r0 = Random.default_rng();

julia> r1 = RandomNumbers.Xorshifts.Xoroshiro128Plus(1);

julia> @btime rand($r0);
  2.458 ns (0 allocations: 0 bytes)

julia> @btime rand($r1);
  1.925 ns (0 allocations: 0 bytes)

julia> @btime rand($r0, 8);
  41.771 ns (1 allocation: 144 bytes)

julia> @btime rand($r1, 8);
  34.454 ns (1 allocation: 144 bytes)

julia> @btime rand($r0, 128);
  171.495 ns (1 allocation: 1.14 KiB)

julia> @btime rand($r1, 128);
  180.105 ns (1 allocation: 1.14 KiB)

julia> @btime rand($r0, 10^7);
  6.606 ms (2 allocations: 76.29 MiB)

julia> @btime rand($r1, 10^7);
  25.872 ms (2 allocations: 76.29 MiB)

Is this to be expected? Perhaps this information could be added to the docs.

julia> versioninfo()
Julia Version 1.5.0-DEV.803
Commit 8ab87d2205 (2020-05-03 08:07 UTC)
Platform Info:
  OS: Linux (x86_64-pc-linux-gnu)
  CPU: Intel(R) Core(TM) i7-7700 CPU @ 3.60GHz
  WORD_SIZE: 64
  LIBM: libopenlibm
  LLVM: libLLVM-9.0.1 (ORCJIT, skylake)
Environment:
  JULIA_NUM_THREADS = 8

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions