Skip to content

Commit bdba80b

Browse files
authored
use released GLM in docs now (#288)
* can use released glm now * it burns, my eyes
1 parent 27e20ee commit bdba80b

File tree

3 files changed

+8
-9
lines changed

3 files changed

+8
-9
lines changed

.github/workflows/docs.yml

Lines changed: 0 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -15,7 +15,6 @@ jobs:
1515
- uses: julia-actions/setup-julia@v1
1616
with:
1717
version: '1.8'
18-
- run: julia --project=docs -e 'using Pkg; pkg"add GLM#dfk/statsmodels-7"'
1918
- uses: julia-actions/julia-buildpkg@latest
2019
- uses: julia-actions/julia-docdeploy@latest
2120
env:

docs/src/formula.md

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -220,7 +220,7 @@ julia> using GLM
220220
221221
222222
julia> lm(@formula(log(y) ~ 1 + a + b), df)
223-
LinearModel
223+
StatsModels.TableRegressionModel{LinearModel{GLM.LmResp{Vector{Float64}}, GLM.DensePredChol{Float64, LinearAlgebra.CholeskyPivoted{Float64, Matrix{Float64}, Vector{Int64}}}}, Matrix{Float64}}
224224
225225
:(log(y)) ~ 1 + a + b
226226
@@ -236,7 +236,7 @@ b -1.63199 1.12678 -1.45 0.1977 -4.38911 1.12513
236236
julia> df.log_y = log.(df.y);
237237
238238
julia> lm(@formula(log_y ~ 1 + a + b), df) # equivalent
239-
LinearModel
239+
StatsModels.TableRegressionModel{LinearModel{GLM.LmResp{Vector{Float64}}, GLM.DensePredChol{Float64, LinearAlgebra.CholeskyPivoted{Float64, Matrix{Float64}, Vector{Int64}}}}, Matrix{Float64}}
240240
241241
log_y ~ 1 + a + b
242242
@@ -368,7 +368,7 @@ julia> response(f, df)
368368
-2.980055366491228
369369
370370
julia> lm(f, df)
371-
LinearModel
371+
StatsModels.TableRegressionModel{LinearModel{GLM.LmResp{Vector{Float64}}, GLM.DensePredChol{Float64, LinearAlgebra.CholeskyPivoted{Float64, Matrix{Float64}, Vector{Int64}}}}, Matrix{Float64}}
372372
373373
:(log(y)) ~ 1 + a + b
374374
@@ -412,7 +412,7 @@ julia> ϵ = randn(rng, 100)*0.1;
412412
julia> data.y = X*β_true .+ ϵ;
413413
414414
julia> mod = fit(LinearModel, @formula(y ~ 1 + a*b), data)
415-
LinearModel
415+
StatsModels.TableRegressionModel{LinearModel{GLM.LmResp{Vector{Float64}}, GLM.DensePredChol{Float64, LinearAlgebra.CholeskyPivoted{Float64, Matrix{Float64}, Vector{Int64}}}}, Matrix{Float64}}
416416
417417
y ~ 1 + a + b + a & b
418418

docs/src/internals.md

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -513,7 +513,7 @@ julia> sim_dat = DataFrame(a=rand(rng, 100).-0.5, b=randn(rng, 100).-0.5);
513513
julia> sim_dat.y = randn(rng, 100) .+ 1 .+ 2*sim_dat.a .+ 3*sim_dat.b.^2;
514514
515515
julia> fit(LinearModel, @formula(y ~ 1 + poly(a,2) + poly(b,2)), sim_dat)
516-
LinearModel
516+
StatsModels.TableRegressionModel{LinearModel{GLM.LmResp{Vector{Float64}}, GLM.DensePredChol{Float64, LinearAlgebra.CholeskyPivoted{Float64, Matrix{Float64}, Vector{Int64}}}}, Matrix{Float64}}
517517
518518
y ~ 1 + poly(a, 2) + poly(b, 2)
519519
@@ -622,7 +622,7 @@ Predictors:
622622
poly(b, 2)
623623
624624
julia> fit(LinearModel, poly_formula, sim_dat)
625-
LinearModel
625+
StatsModels.TableRegressionModel{LinearModel{GLM.LmResp{Vector{Float64}}, GLM.DensePredChol{Float64, LinearAlgebra.CholeskyPivoted{Float64, Matrix{Float64}, Vector{Int64}}}}, Matrix{Float64}}
626626
627627
y ~ 1 + poly(a, 2) + poly(b, 2)
628628
@@ -729,7 +729,7 @@ julia> sim_dat = DataFrame(b=randn(rng, 100));
729729
julia> sim_dat.y = randn(rng, 100) .+ 1 .+ 2*sim_dat.b .+ 3*sim_dat.b.^2;
730730
731731
julia> fit(LinearModel, @formula(y ~ 1 + poly(b,2)), sim_dat)
732-
LinearModel
732+
StatsModels.TableRegressionModel{LinearModel{GLM.LmResp{Vector{Float64}}, GLM.DensePredChol{Float64, LinearAlgebra.CholeskyPivoted{Float64, Matrix{Float64}, Vector{Int64}}}}, Matrix{Float64}}
733733
734734
y ~ 1 + :(poly(b, 2))
735735
@@ -742,7 +742,7 @@ poly(b, 2) 2.95861 0.174347 16.97 <1e-30 2.61262 3.30459
742742
───────────────────────────────────────────────────────────────────────
743743
744744
julia> fit(GeneralizedLinearModel, @formula(y ~ 1 + poly(b,2)), sim_dat, Normal())
745-
GeneralizedLinearModel
745+
StatsModels.TableRegressionModel{GeneralizedLinearModel{GLM.GlmResp{Vector{Float64}, Normal{Float64}, IdentityLink}, GLM.DensePredChol{Float64, LinearAlgebra.CholeskyPivoted{Float64, Matrix{Float64}, Vector{Int64}}}}, Matrix{Float64}}
746746
747747
y ~ 1 + poly(b, 2)
748748

0 commit comments

Comments
 (0)