@@ -513,7 +513,7 @@ julia> sim_dat = DataFrame(a=rand(rng, 100).-0.5, b=randn(rng, 100).-0.5);
513513julia> sim_dat.y = randn(rng, 100) .+ 1 .+ 2*sim_dat.a .+ 3*sim_dat.b.^2;
514514
515515julia> fit(LinearModel, @formula(y ~ 1 + poly(a,2) + poly(b,2)), sim_dat)
516- LinearModel
516+ StatsModels.TableRegressionModel{ LinearModel{GLM.LmResp{Vector{Float64}}, GLM.DensePredChol{Float64, LinearAlgebra.CholeskyPivoted{Float64, Matrix{Float64}, Vector{Int64}}}}, Matrix{Float64}}
517517
518518y ~ 1 + poly(a, 2) + poly(b, 2)
519519
@@ -622,7 +622,7 @@ Predictors:
622622 poly(b, 2)
623623
624624julia> fit(LinearModel, poly_formula, sim_dat)
625- LinearModel
625+ StatsModels.TableRegressionModel{ LinearModel{GLM.LmResp{Vector{Float64}}, GLM.DensePredChol{Float64, LinearAlgebra.CholeskyPivoted{Float64, Matrix{Float64}, Vector{Int64}}}}, Matrix{Float64}}
626626
627627y ~ 1 + poly(a, 2) + poly(b, 2)
628628
@@ -729,7 +729,7 @@ julia> sim_dat = DataFrame(b=randn(rng, 100));
729729julia> sim_dat.y = randn(rng, 100) .+ 1 .+ 2*sim_dat.b .+ 3*sim_dat.b.^2;
730730
731731julia> fit(LinearModel, @formula(y ~ 1 + poly(b,2)), sim_dat)
732- LinearModel
732+ StatsModels.TableRegressionModel{ LinearModel{GLM.LmResp{Vector{Float64}}, GLM.DensePredChol{Float64, LinearAlgebra.CholeskyPivoted{Float64, Matrix{Float64}, Vector{Int64}}}}, Matrix{Float64}}
733733
734734y ~ 1 + :(poly(b, 2))
735735
@@ -742,7 +742,7 @@ poly(b, 2) 2.95861 0.174347 16.97 <1e-30 2.61262 3.30459
742742───────────────────────────────────────────────────────────────────────
743743
744744julia> fit(GeneralizedLinearModel, @formula(y ~ 1 + poly(b,2)), sim_dat, Normal())
745- GeneralizedLinearModel
745+ StatsModels.TableRegressionModel{ GeneralizedLinearModel{GLM.GlmResp{Vector{Float64}, Normal{Float64}, IdentityLink}, GLM.DensePredChol{Float64, LinearAlgebra.CholeskyPivoted{Float64, Matrix{Float64}, Vector{Int64}}}}, Matrix{Float64}}
746746
747747y ~ 1 + poly(b, 2)
748748
0 commit comments