|
| 1 | +--- |
| 2 | +title: Exception Handling |
| 3 | +description: Provider‑agnostic exceptions raised by the SDK and recommended patterns for handling them. |
| 4 | +--- |
| 5 | + |
| 6 | +The SDK normalizes common provider errors into typed, provider‑agnostic exceptions so your application can handle them consistently across OpenAI, Anthropic, Groq, Google, and others. |
| 7 | + |
| 8 | +This guide explains when these errors occur and shows recommended handling patterns for both direct LLM usage and higher‑level agent/conversation flows. |
| 9 | + |
| 10 | +## Why typed exceptions? |
| 11 | + |
| 12 | +LLM providers format errors differently (status codes, messages, exception classes). The SDK maps those into stable types so client apps don’t depend on provider‑specific details. Typical benefits: |
| 13 | + |
| 14 | +- One code path to handle auth, rate limits, timeouts, service issues, and bad requests |
| 15 | +- Clear behavior when conversation history exceeds the context window |
| 16 | +- Backward compatibility when you switch providers or SDK versions |
| 17 | + |
| 18 | +## Quick start: Using agents and conversations |
| 19 | + |
| 20 | +Agent-driven conversations are the common entry point. Exceptions from the underlying LLM calls bubble up from `conversation.run()` and `conversation.send_message(...)` when a condenser is not configured. |
| 21 | + |
| 22 | +```python icon="python" |
| 23 | +from pydantic import SecretStr |
| 24 | +from openhands.sdk import Agent, Conversation, LLM |
| 25 | +from openhands.sdk.llm.exceptions import ( |
| 26 | + LLMError, |
| 27 | + LLMAuthenticationError, |
| 28 | + LLMRateLimitError, |
| 29 | + LLMTimeoutError, |
| 30 | + LLMServiceUnavailableError, |
| 31 | + LLMBadRequestError, |
| 32 | + LLMContextWindowExceedError, |
| 33 | +) |
| 34 | + |
| 35 | +llm = LLM(model="claude-sonnet-4-20250514", api_key=SecretStr("your-key")) |
| 36 | +agent = Agent(llm=llm, tools=[]) |
| 37 | +conversation = Conversation(agent=agent, persistence_dir="./.conversations", workspace=".") |
| 38 | + |
| 39 | +try: |
| 40 | + conversation.send_message("Continue the long analysis we started earlier…") |
| 41 | + conversation.run() |
| 42 | + |
| 43 | +except LLMContextWindowExceedError: |
| 44 | + # Conversation is longer than the model’s context window |
| 45 | + # Options: |
| 46 | + # 1) Enable a condenser (recommended for long sessions) |
| 47 | + # 2) Shorten inputs or reset conversation |
| 48 | + print("Hit the context limit. Consider enabling a condenser.") |
| 49 | + |
| 50 | +except LLMAuthenticationError: |
| 51 | + print("Invalid or missing API credentials. Check your API key or auth setup.") |
| 52 | + |
| 53 | +except LLMRateLimitError: |
| 54 | + print("Rate limit exceeded. Back off and retry later.") |
| 55 | + |
| 56 | +except LLMTimeoutError: |
| 57 | + print("Request timed out. Consider increasing timeout or retrying.") |
| 58 | + |
| 59 | +except LLMServiceUnavailableError: |
| 60 | + print("Service unavailable or connectivity issue. Retry with backoff.") |
| 61 | + |
| 62 | +except LLMBadRequestError: |
| 63 | + print("Bad request to provider. Validate inputs and arguments.") |
| 64 | + |
| 65 | +except LLMError as e: |
| 66 | + # Fallback for other SDK LLM errors (parsing/validation, etc.) |
| 67 | + print(f"Unhandled LLM error: {e}") |
| 68 | +``` |
| 69 | + |
| 70 | + |
| 71 | + |
| 72 | +### Avoiding context‑window errors with a condenser |
| 73 | + |
| 74 | +If a condenser is configured, the SDK emits a condensation request event instead of raising `LLMContextWindowExceedError`. The agent will summarize older history and continue. |
| 75 | + |
| 76 | +```python icon="python" highlight={5-10} |
| 77 | +from openhands.sdk.context.condenser import LLMSummarizingCondenser |
| 78 | + |
| 79 | +condenser = LLMSummarizingCondenser( |
| 80 | + llm=llm.model_copy(update={"usage_id": "condenser"}), |
| 81 | + max_size=10, |
| 82 | + keep_first=2, |
| 83 | +) |
| 84 | + |
| 85 | +agent = Agent(llm=llm, tools=[], condenser=condenser) |
| 86 | +conversation = Conversation(agent=agent, persistence_dir="./.conversations", workspace=".") |
| 87 | +``` |
| 88 | + |
| 89 | +See the dedicated guide: [Context Condenser](/sdk/guides/context-condenser). |
| 90 | + |
| 91 | +## Handling errors with direct LLM calls |
| 92 | + |
| 93 | +The same exceptions are raised from both `LLM.completion()` and `LLM.responses()` paths, so you can share handlers. |
| 94 | + |
| 95 | +### Example: Using completion() |
| 96 | + |
| 97 | +```python icon="python" |
| 98 | +from pydantic import SecretStr |
| 99 | +from openhands.sdk import LLM |
| 100 | +from openhands.sdk.llm import Message, TextContent |
| 101 | +from openhands.sdk.llm.exceptions import ( |
| 102 | + LLMError, |
| 103 | + LLMAuthenticationError, |
| 104 | + LLMRateLimitError, |
| 105 | + LLMTimeoutError, |
| 106 | + LLMServiceUnavailableError, |
| 107 | + LLMBadRequestError, |
| 108 | + LLMContextWindowExceedError, |
| 109 | +) |
| 110 | + |
| 111 | +llm = LLM(model="claude-sonnet-4-20250514", api_key=SecretStr("your-key")) |
| 112 | + |
| 113 | +try: |
| 114 | + response = llm.completion([ |
| 115 | + Message.user([TextContent(text="Summarize our design doc")]) |
| 116 | + ]) |
| 117 | + print(response.message) |
| 118 | + |
| 119 | +except LLMContextWindowExceedError: |
| 120 | + print("Context window exceeded. Consider enabling a condenser.") |
| 121 | +except LLMAuthenticationError: |
| 122 | + print("Invalid or missing API credentials.") |
| 123 | +except LLMRateLimitError: |
| 124 | + print("Rate limit exceeded. Back off and retry later.") |
| 125 | +except LLMTimeoutError: |
| 126 | + print("Request timed out. Consider increasing timeout or retrying.") |
| 127 | +except LLMServiceUnavailableError: |
| 128 | + print("Service unavailable or connectivity issue. Retry with backoff.") |
| 129 | +except LLMBadRequestError: |
| 130 | + print("Bad request to provider. Validate inputs and arguments.") |
| 131 | +except LLMError as e: |
| 132 | + print(f"Unhandled LLM error: {e}") |
| 133 | +``` |
| 134 | + |
| 135 | +### Example: Using responses() |
| 136 | + |
| 137 | +```python icon="python" |
| 138 | +from pydantic import SecretStr |
| 139 | +from openhands.sdk import LLM |
| 140 | +from openhands.sdk.llm import Message, TextContent |
| 141 | +from openhands.sdk.llm.exceptions import LLMError, LLMContextWindowExceedError |
| 142 | + |
| 143 | +llm = LLM(model="claude-sonnet-4-20250514", api_key=SecretStr("your-key")) |
| 144 | + |
| 145 | +try: |
| 146 | + resp = llm.responses([ |
| 147 | + Message.user([TextContent(text="Write a one-line haiku about code.")]) |
| 148 | + ]) |
| 149 | + print(resp.message) |
| 150 | +except LLMContextWindowExceedError: |
| 151 | + print("Context window exceeded. Consider enabling a condenser.") |
| 152 | +except LLMError as e: |
| 153 | + print(f"LLM error: {e}") |
| 154 | +``` |
| 155 | + |
| 156 | +## Exception reference |
| 157 | + |
| 158 | +All exceptions live under `openhands.sdk.llm.exceptions` unless noted. |
| 159 | + |
| 160 | +- Provider/transport mapping (provider‑agnostic): |
| 161 | + - `LLMContextWindowExceedError` — Conversation exceeds the model’s context window. Without a condenser, thrown for both Chat and Responses paths. |
| 162 | + - `LLMAuthenticationError` — Invalid or missing credentials (401/403 patterns). |
| 163 | + - `LLMRateLimitError` — Provider rate limit exceeded. |
| 164 | + - `LLMTimeoutError` — SDK/lower‑level timeout while waiting for the provider. |
| 165 | + - `LLMServiceUnavailableError` — Temporary connectivity/service outage (e.g., 5xx, connection issues). |
| 166 | + - `LLMBadRequestError` — Client‑side request issues (invalid params, malformed input). |
| 167 | + |
| 168 | +- Response parsing/validation: |
| 169 | + - `LLMMalformedActionError` — Model returned a malformed action. |
| 170 | + - `LLMNoActionError` — Model did not return an action when one was expected. |
| 171 | + - `LLMResponseError` — Could not extract an action from the response. |
| 172 | + - `FunctionCallConversionError` — Failed converting tool/function call payloads. |
| 173 | + - `FunctionCallValidationError` — Tool/function call arguments failed validation. |
| 174 | + - `FunctionCallNotExistsError` — Model referenced an unknown tool/function. |
| 175 | + - `LLMNoResponseError` — Provider returned an empty/invalid response (seen rarely, e.g., some Gemini models). |
| 176 | + |
| 177 | +- Cancellation: |
| 178 | + - `UserCancelledError` — A user aborted the operation. |
| 179 | + - `OperationCancelled` — A running operation was cancelled programmatically. |
| 180 | + |
| 181 | +All of the above (except the explicit cancellation types) inherit from `LLMError`, so you can implement a catch‑all for unexpected SDK LLM errors while still keeping fine‑grained handlers for the most common cases. |
| 182 | + |
0 commit comments