diff --git a/paddle_samples/PaddleX/STFPM/graph_hash.txt b/paddle_samples/PaddleX/STFPM/graph_hash.txt new file mode 100644 index 000000000..8008325f5 --- /dev/null +++ b/paddle_samples/PaddleX/STFPM/graph_hash.txt @@ -0,0 +1 @@ +d0f1ca7a396f08edcce5424b609a6a9794e602f78374ed87e6951c1d4dc4fe92 \ No newline at end of file diff --git a/paddle_samples/PaddleX/STFPM/graph_net.json b/paddle_samples/PaddleX/STFPM/graph_net.json new file mode 100644 index 000000000..599a5a566 --- /dev/null +++ b/paddle_samples/PaddleX/STFPM/graph_net.json @@ -0,0 +1,6 @@ +{ + "framework": "paddle", + "model_name": "STFPM", + "num_devices_required": 1, + "num_nodes_required": 1 +} \ No newline at end of file diff --git a/paddle_samples/PaddleX/STFPM/input_meta.py b/paddle_samples/PaddleX/STFPM/input_meta.py new file mode 100644 index 000000000..9e78dfcbd --- /dev/null +++ b/paddle_samples/PaddleX/STFPM/input_meta.py @@ -0,0 +1,9 @@ +class Program_weight_tensor_data_0: + name = "data_0" + shape = [1, 3, 256, 256] + dtype = "float32" + min_val = float("-1.54422") + max_val = float("1.21516") + mean = float("-0.201062") + std = float("0.553945") + data = None diff --git a/paddle_samples/PaddleX/STFPM/model.py b/paddle_samples/PaddleX/STFPM/model.py new file mode 100644 index 000000000..476792de1 --- /dev/null +++ b/paddle_samples/PaddleX/STFPM/model.py @@ -0,0 +1,911 @@ +import paddle + + +class GraphModule(paddle.nn.Layer): + def __init__(self): + super().__init__() + + def forward( + self, + parameter_0, + parameter_1, + parameter_2, + parameter_3, + parameter_4, + parameter_5, + parameter_6, + parameter_7, + parameter_8, + parameter_9, + parameter_10, + parameter_11, + parameter_12, + parameter_13, + parameter_14, + parameter_15, + parameter_16, + parameter_17, + parameter_18, + parameter_19, + parameter_20, + parameter_21, + parameter_22, + parameter_23, + parameter_24, + parameter_25, + parameter_26, + parameter_27, + parameter_28, + parameter_29, + parameter_30, + parameter_31, + parameter_32, + parameter_33, + parameter_34, + parameter_35, + parameter_36, + parameter_37, + parameter_38, + parameter_39, + parameter_40, + parameter_41, + parameter_42, + parameter_43, + parameter_44, + parameter_45, + parameter_46, + parameter_47, + parameter_48, + parameter_49, + parameter_50, + parameter_51, + parameter_52, + parameter_53, + parameter_54, + parameter_55, + parameter_56, + parameter_57, + parameter_58, + parameter_59, + parameter_60, + parameter_61, + parameter_62, + parameter_63, + parameter_64, + parameter_65, + parameter_66, + parameter_67, + parameter_68, + parameter_69, + parameter_70, + parameter_71, + parameter_72, + parameter_73, + parameter_74, + parameter_75, + parameter_76, + parameter_77, + parameter_78, + parameter_79, + parameter_80, + parameter_81, + parameter_82, + parameter_83, + parameter_84, + parameter_85, + parameter_86, + parameter_87, + parameter_88, + parameter_89, + parameter_90, + parameter_91, + parameter_92, + parameter_93, + parameter_94, + parameter_95, + parameter_96, + parameter_97, + parameter_98, + parameter_99, + data_0, + ): + # pd_op.conv2d: (1x64x128x128xf32) <- (1x3x256x256xf32, 64x3x7x7xf32) + conv2d_0 = paddle._C_ops.conv2d( + data_0, parameter_99, [2, 2], [3, 3], "EXPLICIT", [1, 1], 1, "NCHW" + ) + del data_0, parameter_99 + + # pd_op.batch_norm_: (1x64x128x128xf32, 64xf32, 64xf32, 64xf32, 64xf32, -1xui8) <- (1x64x128x128xf32, 64xf32, 64xf32, 64xf32, 64xf32) + ( + batch_norm__0, + batch_norm__1, + batch_norm__2, + batch_norm__3, + batch_norm__4, + batch_norm__5, + ) = (lambda x, f: f(x))( + paddle._C_ops.batch_norm( + conv2d_0, + parameter_98, + parameter_97, + parameter_96, + parameter_95, + True, + float("0.9"), + float("1e-05"), + "NCHW", + True, + False, + ), + lambda out: out + if isinstance(out, (list, tuple)) + else (out, None, None, None, None, None), + ) + del conv2d_0, parameter_95, parameter_96, parameter_97, parameter_98 + + # pd_op.relu: (1x64x128x128xf32) <- (1x64x128x128xf32) + relu_1 = paddle._C_ops.relu(batch_norm__0) + del batch_norm__0 + + # pd_op.full_int_array: (2xi64) <- () + full_int_array_0 = [3, 3] + + # pd_op.pool2d: (1x64x64x64xf32) <- (1x64x128x128xf32, 2xi64) + pool2d_0 = paddle._C_ops.pool2d( + relu_1, + full_int_array_0, + [2, 2], + [1, 1], + False, + True, + "NCHW", + "max", + False, + False, + "EXPLICIT", + ) + del full_int_array_0, relu_1 + + # pd_op.conv2d: (1x64x64x64xf32) <- (1x64x64x64xf32, 64x64x3x3xf32) + conv2d_1 = paddle._C_ops.conv2d( + pool2d_0, parameter_94, [1, 1], [1, 1], "EXPLICIT", [1, 1], 1, "NCHW" + ) + del parameter_94 + + # pd_op.batch_norm_: (1x64x64x64xf32, 64xf32, 64xf32, 64xf32, 64xf32, -1xui8) <- (1x64x64x64xf32, 64xf32, 64xf32, 64xf32, 64xf32) + ( + batch_norm__6, + batch_norm__7, + batch_norm__8, + batch_norm__9, + batch_norm__10, + batch_norm__11, + ) = (lambda x, f: f(x))( + paddle._C_ops.batch_norm( + conv2d_1, + parameter_93, + parameter_92, + parameter_91, + parameter_90, + True, + float("0.9"), + float("1e-05"), + "NCHW", + True, + False, + ), + lambda out: out + if isinstance(out, (list, tuple)) + else (out, None, None, None, None, None), + ) + del conv2d_1, parameter_90, parameter_91, parameter_92, parameter_93 + + # pd_op.relu: (1x64x64x64xf32) <- (1x64x64x64xf32) + relu_2 = paddle._C_ops.relu(batch_norm__6) + del batch_norm__6 + + # pd_op.conv2d: (1x64x64x64xf32) <- (1x64x64x64xf32, 64x64x3x3xf32) + conv2d_2 = paddle._C_ops.conv2d( + relu_2, parameter_89, [1, 1], [1, 1], "EXPLICIT", [1, 1], 1, "NCHW" + ) + del parameter_89, relu_2 + + # pd_op.batch_norm_: (1x64x64x64xf32, 64xf32, 64xf32, 64xf32, 64xf32, -1xui8) <- (1x64x64x64xf32, 64xf32, 64xf32, 64xf32, 64xf32) + ( + batch_norm__12, + batch_norm__13, + batch_norm__14, + batch_norm__15, + batch_norm__16, + batch_norm__17, + ) = (lambda x, f: f(x))( + paddle._C_ops.batch_norm( + conv2d_2, + parameter_88, + parameter_87, + parameter_86, + parameter_85, + True, + float("0.9"), + float("1e-05"), + "NCHW", + True, + False, + ), + lambda out: out + if isinstance(out, (list, tuple)) + else (out, None, None, None, None, None), + ) + del conv2d_2, parameter_85, parameter_86, parameter_87, parameter_88 + + # pd_op.add: (1x64x64x64xf32) <- (1x64x64x64xf32, 1x64x64x64xf32) + add_0 = paddle._C_ops.add(batch_norm__12, pool2d_0) + del batch_norm__12, pool2d_0 + + # pd_op.relu: (1x64x64x64xf32) <- (1x64x64x64xf32) + relu_3 = paddle._C_ops.relu(add_0) + del add_0 + + # pd_op.conv2d: (1x64x64x64xf32) <- (1x64x64x64xf32, 64x64x3x3xf32) + conv2d_3 = paddle._C_ops.conv2d( + relu_3, parameter_84, [1, 1], [1, 1], "EXPLICIT", [1, 1], 1, "NCHW" + ) + del parameter_84 + + # pd_op.batch_norm_: (1x64x64x64xf32, 64xf32, 64xf32, 64xf32, 64xf32, -1xui8) <- (1x64x64x64xf32, 64xf32, 64xf32, 64xf32, 64xf32) + ( + batch_norm__18, + batch_norm__19, + batch_norm__20, + batch_norm__21, + batch_norm__22, + batch_norm__23, + ) = (lambda x, f: f(x))( + paddle._C_ops.batch_norm( + conv2d_3, + parameter_83, + parameter_82, + parameter_81, + parameter_80, + True, + float("0.9"), + float("1e-05"), + "NCHW", + True, + False, + ), + lambda out: out + if isinstance(out, (list, tuple)) + else (out, None, None, None, None, None), + ) + del conv2d_3, parameter_80, parameter_81, parameter_82, parameter_83 + + # pd_op.relu: (1x64x64x64xf32) <- (1x64x64x64xf32) + relu_4 = paddle._C_ops.relu(batch_norm__18) + del batch_norm__18 + + # pd_op.conv2d: (1x64x64x64xf32) <- (1x64x64x64xf32, 64x64x3x3xf32) + conv2d_4 = paddle._C_ops.conv2d( + relu_4, parameter_79, [1, 1], [1, 1], "EXPLICIT", [1, 1], 1, "NCHW" + ) + del parameter_79, relu_4 + + # pd_op.batch_norm_: (1x64x64x64xf32, 64xf32, 64xf32, 64xf32, 64xf32, -1xui8) <- (1x64x64x64xf32, 64xf32, 64xf32, 64xf32, 64xf32) + ( + batch_norm__24, + batch_norm__25, + batch_norm__26, + batch_norm__27, + batch_norm__28, + batch_norm__29, + ) = (lambda x, f: f(x))( + paddle._C_ops.batch_norm( + conv2d_4, + parameter_78, + parameter_77, + parameter_76, + parameter_75, + True, + float("0.9"), + float("1e-05"), + "NCHW", + True, + False, + ), + lambda out: out + if isinstance(out, (list, tuple)) + else (out, None, None, None, None, None), + ) + del conv2d_4, parameter_75, parameter_76, parameter_77, parameter_78 + + # pd_op.add: (1x64x64x64xf32) <- (1x64x64x64xf32, 1x64x64x64xf32) + add_1 = paddle._C_ops.add(batch_norm__24, relu_3) + del batch_norm__24, relu_3 + + # pd_op.relu: (1x64x64x64xf32) <- (1x64x64x64xf32) + relu_5 = paddle._C_ops.relu(add_1) + del add_1 + + # pd_op.conv2d: (1x128x32x32xf32) <- (1x64x64x64xf32, 128x64x3x3xf32) + conv2d_5 = paddle._C_ops.conv2d( + relu_5, parameter_74, [2, 2], [1, 1], "EXPLICIT", [1, 1], 1, "NCHW" + ) + del parameter_74 + + # pd_op.batch_norm_: (1x128x32x32xf32, 128xf32, 128xf32, 128xf32, 128xf32, -1xui8) <- (1x128x32x32xf32, 128xf32, 128xf32, 128xf32, 128xf32) + ( + batch_norm__30, + batch_norm__31, + batch_norm__32, + batch_norm__33, + batch_norm__34, + batch_norm__35, + ) = (lambda x, f: f(x))( + paddle._C_ops.batch_norm( + conv2d_5, + parameter_73, + parameter_72, + parameter_71, + parameter_70, + True, + float("0.9"), + float("1e-05"), + "NCHW", + True, + False, + ), + lambda out: out + if isinstance(out, (list, tuple)) + else (out, None, None, None, None, None), + ) + del conv2d_5, parameter_70, parameter_71, parameter_72, parameter_73 + + # pd_op.relu: (1x128x32x32xf32) <- (1x128x32x32xf32) + relu_6 = paddle._C_ops.relu(batch_norm__30) + del batch_norm__30 + + # pd_op.conv2d: (1x128x32x32xf32) <- (1x128x32x32xf32, 128x128x3x3xf32) + conv2d_6 = paddle._C_ops.conv2d( + relu_6, parameter_69, [1, 1], [1, 1], "EXPLICIT", [1, 1], 1, "NCHW" + ) + del parameter_69, relu_6 + + # pd_op.batch_norm_: (1x128x32x32xf32, 128xf32, 128xf32, 128xf32, 128xf32, -1xui8) <- (1x128x32x32xf32, 128xf32, 128xf32, 128xf32, 128xf32) + ( + batch_norm__36, + batch_norm__37, + batch_norm__38, + batch_norm__39, + batch_norm__40, + batch_norm__41, + ) = (lambda x, f: f(x))( + paddle._C_ops.batch_norm( + conv2d_6, + parameter_68, + parameter_67, + parameter_66, + parameter_65, + True, + float("0.9"), + float("1e-05"), + "NCHW", + True, + False, + ), + lambda out: out + if isinstance(out, (list, tuple)) + else (out, None, None, None, None, None), + ) + del conv2d_6, parameter_65, parameter_66, parameter_67, parameter_68 + + # pd_op.conv2d: (1x128x32x32xf32) <- (1x64x64x64xf32, 128x64x1x1xf32) + conv2d_7 = paddle._C_ops.conv2d( + relu_5, parameter_64, [2, 2], [0, 0], "EXPLICIT", [1, 1], 1, "NCHW" + ) + del parameter_64 + + # pd_op.batch_norm_: (1x128x32x32xf32, 128xf32, 128xf32, 128xf32, 128xf32, -1xui8) <- (1x128x32x32xf32, 128xf32, 128xf32, 128xf32, 128xf32) + ( + batch_norm__42, + batch_norm__43, + batch_norm__44, + batch_norm__45, + batch_norm__46, + batch_norm__47, + ) = (lambda x, f: f(x))( + paddle._C_ops.batch_norm( + conv2d_7, + parameter_63, + parameter_62, + parameter_61, + parameter_60, + True, + float("0.9"), + float("1e-05"), + "NCHW", + True, + False, + ), + lambda out: out + if isinstance(out, (list, tuple)) + else (out, None, None, None, None, None), + ) + del conv2d_7, parameter_60, parameter_61, parameter_62, parameter_63 + + # pd_op.add: (1x128x32x32xf32) <- (1x128x32x32xf32, 1x128x32x32xf32) + add_2 = paddle._C_ops.add(batch_norm__36, batch_norm__42) + del batch_norm__36, batch_norm__42 + + # pd_op.relu: (1x128x32x32xf32) <- (1x128x32x32xf32) + relu_7 = paddle._C_ops.relu(add_2) + del add_2 + + # pd_op.conv2d: (1x128x32x32xf32) <- (1x128x32x32xf32, 128x128x3x3xf32) + conv2d_8 = paddle._C_ops.conv2d( + relu_7, parameter_59, [1, 1], [1, 1], "EXPLICIT", [1, 1], 1, "NCHW" + ) + del parameter_59 + + # pd_op.batch_norm_: (1x128x32x32xf32, 128xf32, 128xf32, 128xf32, 128xf32, -1xui8) <- (1x128x32x32xf32, 128xf32, 128xf32, 128xf32, 128xf32) + ( + batch_norm__48, + batch_norm__49, + batch_norm__50, + batch_norm__51, + batch_norm__52, + batch_norm__53, + ) = (lambda x, f: f(x))( + paddle._C_ops.batch_norm( + conv2d_8, + parameter_58, + parameter_57, + parameter_56, + parameter_55, + True, + float("0.9"), + float("1e-05"), + "NCHW", + True, + False, + ), + lambda out: out + if isinstance(out, (list, tuple)) + else (out, None, None, None, None, None), + ) + del conv2d_8, parameter_55, parameter_56, parameter_57, parameter_58 + + # pd_op.relu: (1x128x32x32xf32) <- (1x128x32x32xf32) + relu_8 = paddle._C_ops.relu(batch_norm__48) + del batch_norm__48 + + # pd_op.conv2d: (1x128x32x32xf32) <- (1x128x32x32xf32, 128x128x3x3xf32) + conv2d_9 = paddle._C_ops.conv2d( + relu_8, parameter_54, [1, 1], [1, 1], "EXPLICIT", [1, 1], 1, "NCHW" + ) + del parameter_54, relu_8 + + # pd_op.batch_norm_: (1x128x32x32xf32, 128xf32, 128xf32, 128xf32, 128xf32, -1xui8) <- (1x128x32x32xf32, 128xf32, 128xf32, 128xf32, 128xf32) + ( + batch_norm__54, + batch_norm__55, + batch_norm__56, + batch_norm__57, + batch_norm__58, + batch_norm__59, + ) = (lambda x, f: f(x))( + paddle._C_ops.batch_norm( + conv2d_9, + parameter_53, + parameter_52, + parameter_51, + parameter_50, + True, + float("0.9"), + float("1e-05"), + "NCHW", + True, + False, + ), + lambda out: out + if isinstance(out, (list, tuple)) + else (out, None, None, None, None, None), + ) + del conv2d_9, parameter_50, parameter_51, parameter_52, parameter_53 + + # pd_op.add: (1x128x32x32xf32) <- (1x128x32x32xf32, 1x128x32x32xf32) + add_3 = paddle._C_ops.add(batch_norm__54, relu_7) + del batch_norm__54, relu_7 + + # pd_op.relu: (1x128x32x32xf32) <- (1x128x32x32xf32) + relu_9 = paddle._C_ops.relu(add_3) + del add_3 + + # pd_op.conv2d: (1x256x16x16xf32) <- (1x128x32x32xf32, 256x128x3x3xf32) + conv2d_10 = paddle._C_ops.conv2d( + relu_9, parameter_49, [2, 2], [1, 1], "EXPLICIT", [1, 1], 1, "NCHW" + ) + del parameter_49 + + # pd_op.batch_norm_: (1x256x16x16xf32, 256xf32, 256xf32, 256xf32, 256xf32, -1xui8) <- (1x256x16x16xf32, 256xf32, 256xf32, 256xf32, 256xf32) + ( + batch_norm__60, + batch_norm__61, + batch_norm__62, + batch_norm__63, + batch_norm__64, + batch_norm__65, + ) = (lambda x, f: f(x))( + paddle._C_ops.batch_norm( + conv2d_10, + parameter_48, + parameter_47, + parameter_46, + parameter_45, + True, + float("0.9"), + float("1e-05"), + "NCHW", + True, + False, + ), + lambda out: out + if isinstance(out, (list, tuple)) + else (out, None, None, None, None, None), + ) + del conv2d_10, parameter_45, parameter_46, parameter_47, parameter_48 + + # pd_op.relu: (1x256x16x16xf32) <- (1x256x16x16xf32) + relu_10 = paddle._C_ops.relu(batch_norm__60) + del batch_norm__60 + + # pd_op.conv2d: (1x256x16x16xf32) <- (1x256x16x16xf32, 256x256x3x3xf32) + conv2d_11 = paddle._C_ops.conv2d( + relu_10, parameter_44, [1, 1], [1, 1], "EXPLICIT", [1, 1], 1, "NCHW" + ) + del parameter_44, relu_10 + + # pd_op.batch_norm_: (1x256x16x16xf32, 256xf32, 256xf32, 256xf32, 256xf32, -1xui8) <- (1x256x16x16xf32, 256xf32, 256xf32, 256xf32, 256xf32) + ( + batch_norm__66, + batch_norm__67, + batch_norm__68, + batch_norm__69, + batch_norm__70, + batch_norm__71, + ) = (lambda x, f: f(x))( + paddle._C_ops.batch_norm( + conv2d_11, + parameter_43, + parameter_42, + parameter_41, + parameter_40, + True, + float("0.9"), + float("1e-05"), + "NCHW", + True, + False, + ), + lambda out: out + if isinstance(out, (list, tuple)) + else (out, None, None, None, None, None), + ) + del conv2d_11, parameter_40, parameter_41, parameter_42, parameter_43 + + # pd_op.conv2d: (1x256x16x16xf32) <- (1x128x32x32xf32, 256x128x1x1xf32) + conv2d_12 = paddle._C_ops.conv2d( + relu_9, parameter_39, [2, 2], [0, 0], "EXPLICIT", [1, 1], 1, "NCHW" + ) + del parameter_39 + + # pd_op.batch_norm_: (1x256x16x16xf32, 256xf32, 256xf32, 256xf32, 256xf32, -1xui8) <- (1x256x16x16xf32, 256xf32, 256xf32, 256xf32, 256xf32) + ( + batch_norm__72, + batch_norm__73, + batch_norm__74, + batch_norm__75, + batch_norm__76, + batch_norm__77, + ) = (lambda x, f: f(x))( + paddle._C_ops.batch_norm( + conv2d_12, + parameter_38, + parameter_37, + parameter_36, + parameter_35, + True, + float("0.9"), + float("1e-05"), + "NCHW", + True, + False, + ), + lambda out: out + if isinstance(out, (list, tuple)) + else (out, None, None, None, None, None), + ) + del conv2d_12, parameter_35, parameter_36, parameter_37, parameter_38 + + # pd_op.add: (1x256x16x16xf32) <- (1x256x16x16xf32, 1x256x16x16xf32) + add_4 = paddle._C_ops.add(batch_norm__66, batch_norm__72) + del batch_norm__66, batch_norm__72 + + # pd_op.relu: (1x256x16x16xf32) <- (1x256x16x16xf32) + relu_11 = paddle._C_ops.relu(add_4) + del add_4 + + # pd_op.conv2d: (1x256x16x16xf32) <- (1x256x16x16xf32, 256x256x3x3xf32) + conv2d_13 = paddle._C_ops.conv2d( + relu_11, parameter_34, [1, 1], [1, 1], "EXPLICIT", [1, 1], 1, "NCHW" + ) + del parameter_34 + + # pd_op.batch_norm_: (1x256x16x16xf32, 256xf32, 256xf32, 256xf32, 256xf32, -1xui8) <- (1x256x16x16xf32, 256xf32, 256xf32, 256xf32, 256xf32) + ( + batch_norm__78, + batch_norm__79, + batch_norm__80, + batch_norm__81, + batch_norm__82, + batch_norm__83, + ) = (lambda x, f: f(x))( + paddle._C_ops.batch_norm( + conv2d_13, + parameter_33, + parameter_32, + parameter_31, + parameter_30, + True, + float("0.9"), + float("1e-05"), + "NCHW", + True, + False, + ), + lambda out: out + if isinstance(out, (list, tuple)) + else (out, None, None, None, None, None), + ) + del conv2d_13, parameter_30, parameter_31, parameter_32, parameter_33 + + # pd_op.relu: (1x256x16x16xf32) <- (1x256x16x16xf32) + relu_12 = paddle._C_ops.relu(batch_norm__78) + del batch_norm__78 + + # pd_op.conv2d: (1x256x16x16xf32) <- (1x256x16x16xf32, 256x256x3x3xf32) + conv2d_14 = paddle._C_ops.conv2d( + relu_12, parameter_29, [1, 1], [1, 1], "EXPLICIT", [1, 1], 1, "NCHW" + ) + del parameter_29, relu_12 + + # pd_op.batch_norm_: (1x256x16x16xf32, 256xf32, 256xf32, 256xf32, 256xf32, -1xui8) <- (1x256x16x16xf32, 256xf32, 256xf32, 256xf32, 256xf32) + ( + batch_norm__84, + batch_norm__85, + batch_norm__86, + batch_norm__87, + batch_norm__88, + batch_norm__89, + ) = (lambda x, f: f(x))( + paddle._C_ops.batch_norm( + conv2d_14, + parameter_28, + parameter_27, + parameter_26, + parameter_25, + True, + float("0.9"), + float("1e-05"), + "NCHW", + True, + False, + ), + lambda out: out + if isinstance(out, (list, tuple)) + else (out, None, None, None, None, None), + ) + del conv2d_14, parameter_25, parameter_26, parameter_27, parameter_28 + + # pd_op.add: (1x256x16x16xf32) <- (1x256x16x16xf32, 1x256x16x16xf32) + add_5 = paddle._C_ops.add(batch_norm__84, relu_11) + del batch_norm__84, relu_11 + + # pd_op.relu: (1x256x16x16xf32) <- (1x256x16x16xf32) + relu_0 = paddle._C_ops.relu(add_5) + del add_5 + + # pd_op.conv2d: (1x512x8x8xf32) <- (1x256x16x16xf32, 512x256x3x3xf32) + conv2d_15 = paddle._C_ops.conv2d( + relu_0, parameter_24, [2, 2], [1, 1], "EXPLICIT", [1, 1], 1, "NCHW" + ) + del parameter_24 + + # pd_op.batch_norm_: (1x512x8x8xf32, 512xf32, 512xf32, 512xf32, 512xf32, -1xui8) <- (1x512x8x8xf32, 512xf32, 512xf32, 512xf32, 512xf32) + ( + batch_norm__90, + batch_norm__91, + batch_norm__92, + batch_norm__93, + batch_norm__94, + batch_norm__95, + ) = (lambda x, f: f(x))( + paddle._C_ops.batch_norm( + conv2d_15, + parameter_23, + parameter_22, + parameter_21, + parameter_20, + True, + float("0.9"), + float("1e-05"), + "NCHW", + True, + False, + ), + lambda out: out + if isinstance(out, (list, tuple)) + else (out, None, None, None, None, None), + ) + del conv2d_15, parameter_20, parameter_21, parameter_22, parameter_23 + + # pd_op.relu: (1x512x8x8xf32) <- (1x512x8x8xf32) + relu_13 = paddle._C_ops.relu(batch_norm__90) + del batch_norm__90 + + # pd_op.conv2d: (1x512x8x8xf32) <- (1x512x8x8xf32, 512x512x3x3xf32) + conv2d_16 = paddle._C_ops.conv2d( + relu_13, parameter_19, [1, 1], [1, 1], "EXPLICIT", [1, 1], 1, "NCHW" + ) + del parameter_19, relu_13 + + # pd_op.batch_norm_: (1x512x8x8xf32, 512xf32, 512xf32, 512xf32, 512xf32, -1xui8) <- (1x512x8x8xf32, 512xf32, 512xf32, 512xf32, 512xf32) + ( + batch_norm__96, + batch_norm__97, + batch_norm__98, + batch_norm__99, + batch_norm__100, + batch_norm__101, + ) = (lambda x, f: f(x))( + paddle._C_ops.batch_norm( + conv2d_16, + parameter_18, + parameter_17, + parameter_16, + parameter_15, + True, + float("0.9"), + float("1e-05"), + "NCHW", + True, + False, + ), + lambda out: out + if isinstance(out, (list, tuple)) + else (out, None, None, None, None, None), + ) + del conv2d_16, parameter_15, parameter_16, parameter_17, parameter_18 + + # pd_op.conv2d: (1x512x8x8xf32) <- (1x256x16x16xf32, 512x256x1x1xf32) + conv2d_17 = paddle._C_ops.conv2d( + relu_0, parameter_14, [2, 2], [0, 0], "EXPLICIT", [1, 1], 1, "NCHW" + ) + del parameter_14, relu_0 + + # pd_op.batch_norm_: (1x512x8x8xf32, 512xf32, 512xf32, 512xf32, 512xf32, -1xui8) <- (1x512x8x8xf32, 512xf32, 512xf32, 512xf32, 512xf32) + ( + batch_norm__102, + batch_norm__103, + batch_norm__104, + batch_norm__105, + batch_norm__106, + batch_norm__107, + ) = (lambda x, f: f(x))( + paddle._C_ops.batch_norm( + conv2d_17, + parameter_13, + parameter_12, + parameter_11, + parameter_10, + True, + float("0.9"), + float("1e-05"), + "NCHW", + True, + False, + ), + lambda out: out + if isinstance(out, (list, tuple)) + else (out, None, None, None, None, None), + ) + del conv2d_17, parameter_10, parameter_11, parameter_12, parameter_13 + + # pd_op.add: (1x512x8x8xf32) <- (1x512x8x8xf32, 1x512x8x8xf32) + add_6 = paddle._C_ops.add(batch_norm__96, batch_norm__102) + del batch_norm__102, batch_norm__96 + + # pd_op.relu: (1x512x8x8xf32) <- (1x512x8x8xf32) + relu_14 = paddle._C_ops.relu(add_6) + del add_6 + + # pd_op.conv2d: (1x512x8x8xf32) <- (1x512x8x8xf32, 512x512x3x3xf32) + conv2d_18 = paddle._C_ops.conv2d( + relu_14, parameter_9, [1, 1], [1, 1], "EXPLICIT", [1, 1], 1, "NCHW" + ) + del parameter_9 + + # pd_op.batch_norm_: (1x512x8x8xf32, 512xf32, 512xf32, 512xf32, 512xf32, -1xui8) <- (1x512x8x8xf32, 512xf32, 512xf32, 512xf32, 512xf32) + ( + batch_norm__108, + batch_norm__109, + batch_norm__110, + batch_norm__111, + batch_norm__112, + batch_norm__113, + ) = (lambda x, f: f(x))( + paddle._C_ops.batch_norm( + conv2d_18, + parameter_8, + parameter_7, + parameter_6, + parameter_5, + True, + float("0.9"), + float("1e-05"), + "NCHW", + True, + False, + ), + lambda out: out + if isinstance(out, (list, tuple)) + else (out, None, None, None, None, None), + ) + del conv2d_18, parameter_5, parameter_6, parameter_7, parameter_8 + + # pd_op.relu: (1x512x8x8xf32) <- (1x512x8x8xf32) + relu_15 = paddle._C_ops.relu(batch_norm__108) + del batch_norm__108 + + # pd_op.conv2d: (1x512x8x8xf32) <- (1x512x8x8xf32, 512x512x3x3xf32) + conv2d_19 = paddle._C_ops.conv2d( + relu_15, parameter_4, [1, 1], [1, 1], "EXPLICIT", [1, 1], 1, "NCHW" + ) + del parameter_4, relu_15 + + # pd_op.batch_norm_: (1x512x8x8xf32, 512xf32, 512xf32, 512xf32, 512xf32, -1xui8) <- (1x512x8x8xf32, 512xf32, 512xf32, 512xf32, 512xf32) + ( + batch_norm__114, + batch_norm__115, + batch_norm__116, + batch_norm__117, + batch_norm__118, + batch_norm__119, + ) = (lambda x, f: f(x))( + paddle._C_ops.batch_norm( + conv2d_19, + parameter_3, + parameter_2, + parameter_1, + parameter_0, + True, + float("0.9"), + float("1e-05"), + "NCHW", + True, + False, + ), + lambda out: out + if isinstance(out, (list, tuple)) + else (out, None, None, None, None, None), + ) + del conv2d_19, parameter_0, parameter_1, parameter_2, parameter_3 + + # pd_op.add: (1x512x8x8xf32) <- (1x512x8x8xf32, 1x512x8x8xf32) + add_7 = paddle._C_ops.add(batch_norm__114, relu_14) + del batch_norm__114, relu_14 + + # pd_op.relu: (1x512x8x8xf32) <- (1x512x8x8xf32) + relu_16 = paddle._C_ops.relu(add_7) + del add_7, relu_5, relu_9 + + return relu_16 diff --git a/paddle_samples/PaddleX/STFPM/weight_meta.py b/paddle_samples/PaddleX/STFPM/weight_meta.py new file mode 100644 index 000000000..ddb7f8a1b --- /dev/null +++ b/paddle_samples/PaddleX/STFPM/weight_meta.py @@ -0,0 +1,1058 @@ +class Program_weight_tensor_parameter_0: + name = "parameter_0" + shape = [512] + dtype = "float32" + min_val = float("0.0318808") + max_val = float("0.528011") + mean = float("0.22751") + std = float("0.0630725") + data = None + + +class Program_weight_tensor_parameter_1: + name = "parameter_1" + shape = [512] + dtype = "float32" + min_val = float("1.4083") + max_val = float("2.44238") + mean = float("1.74648") + std = float("0.121457") + data = None + + +class Program_weight_tensor_parameter_2: + name = "parameter_2" + shape = [512] + dtype = "float32" + min_val = float("0.00938787") + max_val = float("0.0359624") + mean = float("0.0140218") + std = float("0.00197666") + data = None + + +class Program_weight_tensor_parameter_3: + name = "parameter_3" + shape = [512] + dtype = "float32" + min_val = float("-0.330013") + max_val = float("0.0815704") + mean = float("-0.0284101") + std = float("0.0258458") + data = None + + +class Program_weight_tensor_parameter_4: + name = "parameter_4" + shape = [512, 512, 3, 3] + dtype = "float32" + min_val = float("-0.390469") + max_val = float("0.251665") + mean = float("-0.000136553") + std = float("0.0130795") + data = None + + +class Program_weight_tensor_parameter_5: + name = "parameter_5" + shape = [512] + dtype = "float32" + min_val = float("-0.540901") + max_val = float("0.150347") + mean = float("-0.240079") + std = float("0.092521") + data = None + + +class Program_weight_tensor_parameter_6: + name = "parameter_6" + shape = [512] + dtype = "float32" + min_val = float("0.127383") + max_val = float("0.425453") + mean = float("0.287491") + std = float("0.0426542") + data = None + + +class Program_weight_tensor_parameter_7: + name = "parameter_7" + shape = [512] + dtype = "float32" + min_val = float("0.188243") + max_val = float("0.892962") + mean = float("0.328185") + std = float("0.0675297") + data = None + + +class Program_weight_tensor_parameter_8: + name = "parameter_8" + shape = [512] + dtype = "float32" + min_val = float("-1.67777") + max_val = float("1.73262") + mean = float("-1.09431") + std = float("0.226589") + data = None + + +class Program_weight_tensor_parameter_9: + name = "parameter_9" + shape = [512, 512, 3, 3] + dtype = "float32" + min_val = float("-0.331881") + max_val = float("0.258786") + mean = float("-0.00249441") + std = float("0.0173289") + data = None + + +class Program_weight_tensor_parameter_10: + name = "parameter_10" + shape = [512] + dtype = "float32" + min_val = float("-0.376362") + max_val = float("0.0591005") + mean = float("-0.196825") + std = float("0.0614354") + data = None + + +class Program_weight_tensor_parameter_11: + name = "parameter_11" + shape = [512] + dtype = "float32" + min_val = float("0.0924911") + max_val = float("0.518859") + mean = float("0.245248") + std = float("0.0565846") + data = None + + +class Program_weight_tensor_parameter_12: + name = "parameter_12" + shape = [512] + dtype = "float32" + min_val = float("0.00425951") + max_val = float("0.0404418") + mean = float("0.0116802") + std = float("0.00391782") + data = None + + +class Program_weight_tensor_parameter_13: + name = "parameter_13" + shape = [512] + dtype = "float32" + min_val = float("-0.199185") + max_val = float("0.608781") + mean = float("-0.0179375") + std = float("0.0561503") + data = None + + +class Program_weight_tensor_parameter_14: + name = "parameter_14" + shape = [512, 256, 1, 1] + dtype = "float32" + min_val = float("-0.816973") + max_val = float("0.337579") + mean = float("-0.000563961") + std = float("0.0291861") + data = None + + +class Program_weight_tensor_parameter_15: + name = "parameter_15" + shape = [512] + dtype = "float32" + min_val = float("-0.376362") + max_val = float("0.0591005") + mean = float("-0.196825") + std = float("0.0614354") + data = None + + +class Program_weight_tensor_parameter_16: + name = "parameter_16" + shape = [512] + dtype = "float32" + min_val = float("0.223617") + max_val = float("1.00544") + mean = float("0.531693") + std = float("0.0605323") + data = None + + +class Program_weight_tensor_parameter_17: + name = "parameter_17" + shape = [512] + dtype = "float32" + min_val = float("0.0132799") + max_val = float("0.117756") + mean = float("0.0236118") + std = float("0.00826997") + data = None + + +class Program_weight_tensor_parameter_18: + name = "parameter_18" + shape = [512] + dtype = "float32" + min_val = float("-0.264202") + max_val = float("0.745614") + mean = float("-0.122051") + std = float("0.0645659") + data = None + + +class Program_weight_tensor_parameter_19: + name = "parameter_19" + shape = [512, 512, 3, 3] + dtype = "float32" + min_val = float("-0.333323") + max_val = float("0.411566") + mean = float("-0.00108166") + std = float("0.0171628") + data = None + + +class Program_weight_tensor_parameter_20: + name = "parameter_20" + shape = [512] + dtype = "float32" + min_val = float("-0.699018") + max_val = float("0.187542") + mean = float("-0.248638") + std = float("0.0826924") + data = None + + +class Program_weight_tensor_parameter_21: + name = "parameter_21" + shape = [512] + dtype = "float32" + min_val = float("0.137705") + max_val = float("0.482447") + mean = float("0.277886") + std = float("0.0342759") + data = None + + +class Program_weight_tensor_parameter_22: + name = "parameter_22" + shape = [512] + dtype = "float32" + min_val = float("0.075404") + max_val = float("0.332755") + mean = float("0.13484") + std = float("0.0269851") + data = None + + +class Program_weight_tensor_parameter_23: + name = "parameter_23" + shape = [512] + dtype = "float32" + min_val = float("-1.15621") + max_val = float("0.345702") + mean = float("-0.325267") + std = float("0.175642") + data = None + + +class Program_weight_tensor_parameter_24: + name = "parameter_24" + shape = [512, 256, 3, 3] + dtype = "float32" + min_val = float("-0.234134") + max_val = float("0.319417") + mean = float("-0.00139598") + std = float("0.0204891") + data = None + + +class Program_weight_tensor_parameter_25: + name = "parameter_25" + shape = [256] + dtype = "float32" + min_val = float("-0.672112") + max_val = float("0.175004") + mean = float("-0.207006") + std = float("0.144824") + data = None + + +class Program_weight_tensor_parameter_26: + name = "parameter_26" + shape = [256] + dtype = "float32" + min_val = float("0.0572091") + max_val = float("0.621537") + mean = float("0.254945") + std = float("0.112732") + data = None + + +class Program_weight_tensor_parameter_27: + name = "parameter_27" + shape = [256] + dtype = "float32" + min_val = float("0.00786664") + max_val = float("0.0595664") + mean = float("0.0225806") + std = float("0.00931339") + data = None + + +class Program_weight_tensor_parameter_28: + name = "parameter_28" + shape = [256] + dtype = "float32" + min_val = float("-0.637725") + max_val = float("0.4241") + mean = float("-0.104907") + std = float("0.103395") + data = None + + +class Program_weight_tensor_parameter_29: + name = "parameter_29" + shape = [256, 256, 3, 3] + dtype = "float32" + min_val = float("-0.223175") + max_val = float("0.270533") + mean = float("-0.00182474") + std = float("0.0213125") + data = None + + +class Program_weight_tensor_parameter_30: + name = "parameter_30" + shape = [256] + dtype = "float32" + min_val = float("-0.760569") + max_val = float("0.188128") + mean = float("-0.250213") + std = float("0.123843") + data = None + + +class Program_weight_tensor_parameter_31: + name = "parameter_31" + shape = [256] + dtype = "float32" + min_val = float("0.114274") + max_val = float("0.514129") + mean = float("0.289284") + std = float("0.0546789") + data = None + + +class Program_weight_tensor_parameter_32: + name = "parameter_32" + shape = [256] + dtype = "float32" + min_val = float("0.0858827") + max_val = float("0.477435") + mean = float("0.16419") + std = float("0.0512708") + data = None + + +class Program_weight_tensor_parameter_33: + name = "parameter_33" + shape = [256] + dtype = "float32" + min_val = float("-1.85871") + max_val = float("1.0722") + mean = float("-0.395986") + std = float("0.348973") + data = None + + +class Program_weight_tensor_parameter_34: + name = "parameter_34" + shape = [256, 256, 3, 3] + dtype = "float32" + min_val = float("-0.26959") + max_val = float("0.265632") + mean = float("-0.00185683") + std = float("0.0228273") + data = None + + +class Program_weight_tensor_parameter_35: + name = "parameter_35" + shape = [256] + dtype = "float32" + min_val = float("-0.49799") + max_val = float("0.163236") + mean = float("-0.0490798") + std = float("0.0975837") + data = None + + +class Program_weight_tensor_parameter_36: + name = "parameter_36" + shape = [256] + dtype = "float32" + min_val = float("0.01382") + max_val = float("0.2887") + mean = float("0.109583") + std = float("0.0481557") + data = None + + +class Program_weight_tensor_parameter_37: + name = "parameter_37" + shape = [256] + dtype = "float32" + min_val = float("0.00216973") + max_val = float("0.0556628") + mean = float("0.0213781") + std = float("0.010213") + data = None + + +class Program_weight_tensor_parameter_38: + name = "parameter_38" + shape = [256] + dtype = "float32" + min_val = float("-0.425395") + max_val = float("0.372406") + mean = float("-0.046856") + std = float("0.106813") + data = None + + +class Program_weight_tensor_parameter_39: + name = "parameter_39" + shape = [256, 128, 1, 1] + dtype = "float32" + min_val = float("-0.405692") + max_val = float("0.362475") + mean = float("-0.00162062") + std = float("0.0387306") + data = None + + +class Program_weight_tensor_parameter_40: + name = "parameter_40" + shape = [256] + dtype = "float32" + min_val = float("-0.49799") + max_val = float("0.163236") + mean = float("-0.0490798") + std = float("0.0975837") + data = None + + +class Program_weight_tensor_parameter_41: + name = "parameter_41" + shape = [256] + dtype = "float32" + min_val = float("0.141176") + max_val = float("0.569826") + mean = float("0.329862") + std = float("0.0774057") + data = None + + +class Program_weight_tensor_parameter_42: + name = "parameter_42" + shape = [256] + dtype = "float32" + min_val = float("0.0439446") + max_val = float("0.252004") + mean = float("0.0913649") + std = float("0.0310039") + data = None + + +class Program_weight_tensor_parameter_43: + name = "parameter_43" + shape = [256] + dtype = "float32" + min_val = float("-0.675011") + max_val = float("0.354508") + mean = float("-0.167951") + std = float("0.153458") + data = None + + +class Program_weight_tensor_parameter_44: + name = "parameter_44" + shape = [256, 256, 3, 3] + dtype = "float32" + min_val = float("-0.358815") + max_val = float("0.4652") + mean = float("-0.00110841") + std = float("0.025435") + data = None + + +class Program_weight_tensor_parameter_45: + name = "parameter_45" + shape = [256] + dtype = "float32" + min_val = float("-0.375005") + max_val = float("0.168939") + mean = float("-0.141223") + std = float("0.0907853") + data = None + + +class Program_weight_tensor_parameter_46: + name = "parameter_46" + shape = [256] + dtype = "float32" + min_val = float("0.199538") + max_val = float("0.480196") + mean = float("0.31944") + std = float("0.0410408") + data = None + + +class Program_weight_tensor_parameter_47: + name = "parameter_47" + shape = [256] + dtype = "float32" + min_val = float("0.149106") + max_val = float("0.644703") + mean = float("0.293793") + std = float("0.0770305") + data = None + + +class Program_weight_tensor_parameter_48: + name = "parameter_48" + shape = [256] + dtype = "float32" + min_val = float("-1.6928") + max_val = float("1.3048") + mean = float("-0.436802") + std = float("0.392002") + data = None + + +class Program_weight_tensor_parameter_49: + name = "parameter_49" + shape = [256, 128, 3, 3] + dtype = "float32" + min_val = float("-0.339269") + max_val = float("0.390058") + mean = float("-0.00155937") + std = float("0.029771") + data = None + + +class Program_weight_tensor_parameter_50: + name = "parameter_50" + shape = [128] + dtype = "float32" + min_val = float("-0.563891") + max_val = float("0.325674") + mean = float("-0.109761") + std = float("0.167878") + data = None + + +class Program_weight_tensor_parameter_51: + name = "parameter_51" + shape = [128] + dtype = "float32" + min_val = float("0.0450367") + max_val = float("0.627042") + mean = float("0.294486") + std = float("0.141658") + data = None + + +class Program_weight_tensor_parameter_52: + name = "parameter_52" + shape = [128] + dtype = "float32" + min_val = float("0.00875327") + max_val = float("0.105119") + mean = float("0.0443794") + std = float("0.0217019") + data = None + + +class Program_weight_tensor_parameter_53: + name = "parameter_53" + shape = [128] + dtype = "float32" + min_val = float("-0.663128") + max_val = float("0.686416") + mean = float("-0.105243") + std = float("0.14984") + data = None + + +class Program_weight_tensor_parameter_54: + name = "parameter_54" + shape = [128, 128, 3, 3] + dtype = "float32" + min_val = float("-0.335569") + max_val = float("0.389193") + mean = float("-0.0018809") + std = float("0.0311068") + data = None + + +class Program_weight_tensor_parameter_55: + name = "parameter_55" + shape = [128] + dtype = "float32" + min_val = float("-0.696134") + max_val = float("0.0644196") + mean = float("-0.221818") + std = float("0.113874") + data = None + + +class Program_weight_tensor_parameter_56: + name = "parameter_56" + shape = [128] + dtype = "float32" + min_val = float("0.233854") + max_val = float("0.581869") + mean = float("0.344386") + std = float("0.0526995") + data = None + + +class Program_weight_tensor_parameter_57: + name = "parameter_57" + shape = [128] + dtype = "float32" + min_val = float("0.104491") + max_val = float("0.845752") + mean = float("0.282537") + std = float("0.123765") + data = None + + +class Program_weight_tensor_parameter_58: + name = "parameter_58" + shape = [128] + dtype = "float32" + min_val = float("-1.16363") + max_val = float("1.28772") + mean = float("-0.31756") + std = float("0.327098") + data = None + + +class Program_weight_tensor_parameter_59: + name = "parameter_59" + shape = [128, 128, 3, 3] + dtype = "float32" + min_val = float("-0.330242") + max_val = float("0.496327") + mean = float("-0.00182635") + std = float("0.0354316") + data = None + + +class Program_weight_tensor_parameter_60: + name = "parameter_60" + shape = [128] + dtype = "float32" + min_val = float("-0.244071") + max_val = float("0.210061") + mean = float("-0.0105737") + std = float("0.0900847") + data = None + + +class Program_weight_tensor_parameter_61: + name = "parameter_61" + shape = [128] + dtype = "float32" + min_val = float("0.00639295") + max_val = float("0.53858") + mean = float("0.181035") + std = float("0.0949545") + data = None + + +class Program_weight_tensor_parameter_62: + name = "parameter_62" + shape = [128] + dtype = "float32" + min_val = float("0.00843929") + max_val = float("0.287562") + mean = float("0.0786078") + std = float("0.0558961") + data = None + + +class Program_weight_tensor_parameter_63: + name = "parameter_63" + shape = [128] + dtype = "float32" + min_val = float("-0.800473") + max_val = float("1.31885") + mean = float("-0.0430369") + std = float("0.273573") + data = None + + +class Program_weight_tensor_parameter_64: + name = "parameter_64" + shape = [128, 64, 1, 1] + dtype = "float32" + min_val = float("-0.647083") + max_val = float("0.771812") + mean = float("-0.00173632") + std = float("0.0693106") + data = None + + +class Program_weight_tensor_parameter_65: + name = "parameter_65" + shape = [128] + dtype = "float32" + min_val = float("-0.244071") + max_val = float("0.210061") + mean = float("-0.0105737") + std = float("0.0900847") + data = None + + +class Program_weight_tensor_parameter_66: + name = "parameter_66" + shape = [128] + dtype = "float32" + min_val = float("0.110028") + max_val = float("0.649541") + mean = float("0.350825") + std = float("0.105627") + data = None + + +class Program_weight_tensor_parameter_67: + name = "parameter_67" + shape = [128] + dtype = "float32" + min_val = float("0.0278526") + max_val = float("0.314263") + mean = float("0.101928") + std = float("0.050357") + data = None + + +class Program_weight_tensor_parameter_68: + name = "parameter_68" + shape = [128] + dtype = "float32" + min_val = float("-1.18115") + max_val = float("1.04257") + mean = float("-0.143823") + std = float("0.259063") + data = None + + +class Program_weight_tensor_parameter_69: + name = "parameter_69" + shape = [128, 128, 3, 3] + dtype = "float32" + min_val = float("-0.370554") + max_val = float("0.431965") + mean = float("-0.000884545") + std = float("0.0360175") + data = None + + +class Program_weight_tensor_parameter_70: + name = "parameter_70" + shape = [128] + dtype = "float32" + min_val = float("-0.361669") + max_val = float("0.467714") + mean = float("-0.0826597") + std = float("0.10144") + data = None + + +class Program_weight_tensor_parameter_71: + name = "parameter_71" + shape = [128] + dtype = "float32" + min_val = float("0.189793") + max_val = float("0.418438") + mean = float("0.340827") + std = float("0.0390889") + data = None + + +class Program_weight_tensor_parameter_72: + name = "parameter_72" + shape = [128] + dtype = "float32" + min_val = float("0.311338") + max_val = float("1.74052") + mean = float("0.78656") + std = float("0.238812") + data = None + + +class Program_weight_tensor_parameter_73: + name = "parameter_73" + shape = [128] + dtype = "float32" + min_val = float("-1.56294") + max_val = float("1.06375") + mean = float("-0.360913") + std = float("0.430996") + data = None + + +class Program_weight_tensor_parameter_74: + name = "parameter_74" + shape = [128, 64, 3, 3] + dtype = "float32" + min_val = float("-0.347813") + max_val = float("0.354365") + mean = float("-0.00150566") + std = float("0.0436333") + data = None + + +class Program_weight_tensor_parameter_75: + name = "parameter_75" + shape = [64] + dtype = "float32" + min_val = float("0") + max_val = float("0.5") + data = None + + +class Program_weight_tensor_parameter_76: + name = "parameter_76" + shape = [64] + dtype = "float32" + min_val = float("0") + max_val = float("0.5") + data = None + + +class Program_weight_tensor_parameter_77: + name = "parameter_77" + shape = [64] + dtype = "float32" + min_val = float("0") + max_val = float("0.5") + data = None + + +class Program_weight_tensor_parameter_78: + name = "parameter_78" + shape = [64] + dtype = "float32" + min_val = float("0") + max_val = float("0.5") + data = None + + +class Program_weight_tensor_parameter_79: + name = "parameter_79" + shape = [64, 64, 3, 3] + dtype = "float32" + min_val = float("-0.380435") + max_val = float("0.349747") + mean = float("-0.00119679") + std = float("0.0449416") + data = None + + +class Program_weight_tensor_parameter_80: + name = "parameter_80" + shape = [64] + dtype = "float32" + min_val = float("0") + max_val = float("0.5") + data = None + + +class Program_weight_tensor_parameter_81: + name = "parameter_81" + shape = [64] + dtype = "float32" + min_val = float("0") + max_val = float("0.5") + data = None + + +class Program_weight_tensor_parameter_82: + name = "parameter_82" + shape = [64] + dtype = "float32" + min_val = float("0") + max_val = float("0.5") + data = None + + +class Program_weight_tensor_parameter_83: + name = "parameter_83" + shape = [64] + dtype = "float32" + min_val = float("0") + max_val = float("0.5") + data = None + + +class Program_weight_tensor_parameter_84: + name = "parameter_84" + shape = [64, 64, 3, 3] + dtype = "float32" + min_val = float("-0.378201") + max_val = float("0.338886") + mean = float("-0.00283112") + std = float("0.0472125") + data = None + + +class Program_weight_tensor_parameter_85: + name = "parameter_85" + shape = [64] + dtype = "float32" + min_val = float("0") + max_val = float("0.5") + data = None + + +class Program_weight_tensor_parameter_86: + name = "parameter_86" + shape = [64] + dtype = "float32" + min_val = float("0") + max_val = float("0.5") + data = None + + +class Program_weight_tensor_parameter_87: + name = "parameter_87" + shape = [64] + dtype = "float32" + min_val = float("0") + max_val = float("0.5") + data = None + + +class Program_weight_tensor_parameter_88: + name = "parameter_88" + shape = [64] + dtype = "float32" + min_val = float("0") + max_val = float("0.5") + data = None + + +class Program_weight_tensor_parameter_89: + name = "parameter_89" + shape = [64, 64, 3, 3] + dtype = "float32" + min_val = float("-0.581769") + max_val = float("0.404201") + mean = float("-0.00159763") + std = float("0.0502428") + data = None + + +class Program_weight_tensor_parameter_90: + name = "parameter_90" + shape = [64] + dtype = "float32" + min_val = float("0") + max_val = float("0.5") + data = None + + +class Program_weight_tensor_parameter_91: + name = "parameter_91" + shape = [64] + dtype = "float32" + min_val = float("0") + max_val = float("0.5") + data = None + + +class Program_weight_tensor_parameter_92: + name = "parameter_92" + shape = [64] + dtype = "float32" + min_val = float("0") + max_val = float("0.5") + data = None + + +class Program_weight_tensor_parameter_93: + name = "parameter_93" + shape = [64] + dtype = "float32" + min_val = float("0") + max_val = float("0.5") + data = None + + +class Program_weight_tensor_parameter_94: + name = "parameter_94" + shape = [64, 64, 3, 3] + dtype = "float32" + min_val = float("-0.78444") + max_val = float("0.668266") + mean = float("-0.00292819") + std = float("0.0603098") + data = None + + +class Program_weight_tensor_parameter_95: + name = "parameter_95" + shape = [64] + dtype = "float32" + min_val = float("0") + max_val = float("0.5") + data = None + + +class Program_weight_tensor_parameter_96: + name = "parameter_96" + shape = [64] + dtype = "float32" + min_val = float("0") + max_val = float("0.5") + data = None + + +class Program_weight_tensor_parameter_97: + name = "parameter_97" + shape = [64] + dtype = "float32" + min_val = float("0") + max_val = float("0.5") + data = None + + +class Program_weight_tensor_parameter_98: + name = "parameter_98" + shape = [64] + dtype = "float32" + min_val = float("0") + max_val = float("0.5") + data = None + + +class Program_weight_tensor_parameter_99: + name = "parameter_99" + shape = [64, 3, 7, 7] + dtype = "float32" + min_val = float("-0.792412") + max_val = float("0.898735") + mean = float("-0.000543189") + std = float("0.133299") + data = None