Skip to content

Commit 9333aa4

Browse files
committed
Update the examples
Signed-off-by: GitHub Actions Bot <[email protected]>
1 parent a207b46 commit 9333aa4

File tree

1 file changed

+22
-23
lines changed

1 file changed

+22
-23
lines changed

examples/Power Flow Example.ipynb

Lines changed: 22 additions & 23 deletions
Original file line numberDiff line numberDiff line change
@@ -49,7 +49,7 @@
4949
"\n",
5050
"from power_grid_model import LoadGenType, ComponentType, DatasetType, ComponentAttributeFilterOptions\n",
5151
"from power_grid_model import PowerGridModel, CalculationMethod, CalculationType\n",
52-
"from power_grid_model import initialize_array, power_grid_meta_data"
52+
"from power_grid_model import initialize_array, attribute_dtype"
5353
]
5454
},
5555
{
@@ -127,7 +127,7 @@
127127
"\n",
128128
"A columnar data format better integrates with most databases. In addition, it may bring memory and, in some cases, even computational performance improvements, because unused attribute columns can be omitted.\n",
129129
"\n",
130-
"Make sure to provide the correct `dtype` to the numpy arrays, exposed for each dataset type, component and attribute via the `power_grid_meta_data` object."
130+
"Make sure to provide the correct `dtype` to the numpy arrays, exposed for each dataset type, component and attribute via the helper function `attribute_dtype` function."
131131
]
132132
},
133133
{
@@ -137,12 +137,11 @@
137137
"metadata": {},
138138
"outputs": [],
139139
"source": [
140-
"source_attribute_dtypes = power_grid_meta_data[DatasetType.input][ComponentType.source].dtype\n",
141140
"source_columns = {\n",
142-
" \"id\": np.array([10], dtype=source_attribute_dtypes[\"id\"]),\n",
143-
" \"node\": np.array([1], dtype=source_attribute_dtypes[\"node\"]),\n",
144-
" \"status\": np.array([1], dtype=source_attribute_dtypes[\"status\"]),\n",
145-
" \"u_ref\": np.array([1.0], dtype=source_attribute_dtypes[\"u_ref\"]),\n",
141+
" \"id\": np.array([10], dtype=attribute_dtype(DatasetType.input, ComponentType.source, \"id\")),\n",
142+
" \"node\": np.array([1], dtype=attribute_dtype(DatasetType.input, ComponentType.source, \"node\")),\n",
143+
" \"status\": np.array([1], dtype=attribute_dtype(DatasetType.input, ComponentType.source, \"status\")),\n",
144+
" \"u_ref\": np.array([1.0], dtype=attribute_dtype(DatasetType.input, ComponentType.source, \"u_ref\")),\n",
146145
" # We're not creating columns for u_ref_angle, sk, ... Instead, the default values are used. This saves us memory.\n",
147146
"}\n",
148147
"\n",
@@ -674,10 +673,11 @@
674673
"metadata": {},
675674
"outputs": [],
676675
"source": [
677-
"line_update_dtype = power_grid_meta_data[DatasetType.update][ComponentType.line].dtype\n",
678676
"columnar_update_line = {\n",
679-
" \"id\": np.array([3], dtype=line_update_dtype[\"id\"]), # change line ID 3\n",
680-
" \"from_status\": np.array([0], dtype=line_update_dtype[\"from_status\"]), # switch off at from side\n",
677+
" \"id\": np.array([3], dtype=attribute_dtype(DatasetType.update, ComponentType.line, \"id\")), # change line ID 3\n",
678+
" \"from_status\": np.array(\n",
679+
" [0], dtype=attribute_dtype(DatasetType.update, ComponentType.line, \"from_status\")\n",
680+
" ), # switch off at from side\n",
681681
"}\n",
682682
"# leave to-side swiching status the same, no need to specify\n",
683683
"\n",
@@ -699,11 +699,10 @@
699699
"metadata": {},
700700
"outputs": [],
701701
"source": [
702-
"line_update_dtype = power_grid_meta_data[DatasetType.update][ComponentType.line].dtype\n",
703702
"columnar_no_ID_update_line = {\n",
704703
" # Update IDs are not specified\n",
705704
" \"from_status\": np.array(\n",
706-
" [0, 1, 1], dtype=line_update_dtype[\"from_status\"]\n",
705+
" [0, 1, 1], dtype=attribute_dtype(DatasetType.update, ComponentType.line, \"from_status\")\n",
707706
" ), # The update for the whole column needs to be specified\n",
708707
"}\n",
709708
"# leave to-side swiching status the same, no need to specify\n",
@@ -1404,16 +1403,16 @@
14041403
"output_type": "stream",
14051404
"text": [
14061405
"Node data with invalid results\n",
1407-
"[[0.99940117 0.99268579 0.99452137]\n",
1408-
" [0.99934769 0.98622639 0.98935286]\n",
1409-
" [0.99928838 0.97965401 0.98409554]\n",
1410-
" [0. 0. 0. ]\n",
1411-
" [0.99915138 0.96614948 0.97329879]\n",
1412-
" [0.99907317 0.95920586 0.96775071]\n",
1413-
" [0.9989881 0.95212621 0.96209647]\n",
1414-
" [0. 0. 0. ]\n",
1415-
" [0.99879613 0.93753005 0.95044796]\n",
1416-
" [0.9986885 0.92999747 0.94444167]]\n",
1406+
"[[9.99401170e-001 9.92685785e-001 9.94521366e-001]\n",
1407+
" [9.99347687e-001 9.86226389e-001 9.89352855e-001]\n",
1408+
" [9.99288384e-001 9.79654011e-001 9.84095542e-001]\n",
1409+
" [3.94357132e+180 2.87518198e+161 2.04418455e+214]\n",
1410+
" [9.99151380e-001 9.66149483e-001 9.73298790e-001]\n",
1411+
" [9.99073166e-001 9.59205860e-001 9.67750710e-001]\n",
1412+
" [9.98988099e-001 9.52126208e-001 9.62096474e-001]\n",
1413+
" [0.00000000e+000 0.00000000e+000 0.00000000e+000]\n",
1414+
" [9.98796126e-001 9.37530046e-001 9.50447962e-001]\n",
1415+
" [9.98688504e-001 9.29997471e-001 9.44441670e-001]]\n",
14171416
"Node data with only valid results\n",
14181417
"[[0.99940117 0.99268579 0.99452137]\n",
14191418
" [0.99934769 0.98622639 0.98935286]\n",
@@ -1456,7 +1455,7 @@
14561455
],
14571456
"metadata": {
14581457
"kernelspec": {
1459-
"display_name": "venv",
1458+
"display_name": ".venv",
14601459
"language": "python",
14611460
"name": "python3"
14621461
},

0 commit comments

Comments
 (0)