Skip to content

Commit 8bad614

Browse files
Format code with black, yapf, autopep8 and isort
1 parent 3c6abe4 commit 8bad614

File tree

1 file changed

+63
-53
lines changed

1 file changed

+63
-53
lines changed

download.py

Lines changed: 63 additions & 53 deletions
Original file line numberDiff line numberDiff line change
@@ -1,13 +1,15 @@
1-
import pandas as pd
21
import matplotlib.pyplot as plt
2+
import pandas as pd
33
from tqdm import tqdm
4+
45
try:
56
from urllib.request import urlretrieve # Python 3
67
except ImportError:
78
from urllib import urlretrieve # Python 2
8-
classes = pd.read_csv('./classes.csv')
9-
labelnames = classes['LabelName'].tolist()
10-
classnames = classes['DisplayName'].tolist()
9+
10+
classes = pd.read_csv("./classes.csv")
11+
labelnames = classes["LabelName"].tolist()
12+
classnames = classes["DisplayName"].tolist()
1113
__imageids = []
1214
__imageids_and_bbox = {}
1315
imageids = []
@@ -22,74 +24,82 @@
2224
image_id = 0
2325

2426
imageid_and_labelname = pd.read_csv(
25-
'./open_images_data/oidv6-train-annotations-human-imagelabels.csv')
26-
imageid_and_labelname.append(pd.read_csv(
27-
'./open_images_data/test-annotations-human-imagelabels-boxable.csv'))
28-
imageid_and_labelname.append(pd.read_csv(
29-
'./open_images_data/test-annotations-machine-imagelabels.csv'))
30-
imageid_and_labelname.append(pd.read_csv(
31-
'./open_images_data/train-annotations-human-imagelabels-boxable.csv'))
32-
imageid_and_labelname.append(pd.read_csv(
33-
'./open_images_data/train-annotations-machine-imagelabels.csv'))
34-
imageid_and_labelname.append(pd.read_csv(
35-
'./open_images_data/validation-annotations-human-imagelabels-boxable.csv'))
36-
imageid_and_labelname.append(pd.read_csv(
37-
'./open_images_data/validation-annotations-machine-imagelabels.csv'))
38-
tqdm_iter = tqdm(imageid_and_labelname['ImageID'])
39-
for imageid, labelname in zip(tqdm_iter, imageid_and_labelname['LabelName']):
27+
"./open_images_data/oidv6-train-annotations-human-imagelabels.csv")
28+
imageid_and_labelname.append(
29+
pd.read_csv(
30+
"./open_images_data/test-annotations-human-imagelabels-boxable.csv"))
31+
imageid_and_labelname.append(
32+
pd.read_csv("./open_images_data/test-annotations-machine-imagelabels.csv"))
33+
imageid_and_labelname.append(
34+
pd.read_csv(
35+
"./open_images_data/train-annotations-human-imagelabels-boxable.csv"))
36+
imageid_and_labelname.append(
37+
pd.read_csv(
38+
"./open_images_data/train-annotations-machine-imagelabels.csv"))
39+
imageid_and_labelname.append(
40+
pd.read_csv(
41+
"./open_images_data/validation-annotations-human-imagelabels-boxable.csv"
42+
))
43+
imageid_and_labelname.append(
44+
pd.read_csv(
45+
"./open_images_data/validation-annotations-machine-imagelabels.csv"))
46+
tqdm_iter = tqdm(imageid_and_labelname["ImageID"])
47+
for imageid, labelname in zip(tqdm_iter, imageid_and_labelname["LabelName"]):
4048
if labelname in labelnames:
41-
tqdm_iter.set_description(f'{imageid}-{labelname}')
49+
tqdm_iter.set_description(f"{imageid}-{labelname}")
4250
__imageids.append(imageid)
4351

4452
del imageid_and_labelname
4553

46-
4754
xmin_ymin_xmax_ymax = pd.read_csv(
48-
'./open_images_data/oidv6-train-annotations-bbox.csv')
49-
xmin_ymin_xmax_ymax.append(pd.read_csv(
50-
'./open_images_data/test-annotations-bbox.csv'))
51-
xmin_ymin_xmax_ymax.append(pd.read_csv(
52-
'./open_images_data/validation-annotations-bbox.csv'))
55+
"./open_images_data/oidv6-train-annotations-bbox.csv")
56+
xmin_ymin_xmax_ymax.append(
57+
pd.read_csv("./open_images_data/test-annotations-bbox.csv"))
58+
xmin_ymin_xmax_ymax.append(
59+
pd.read_csv("./open_images_data/validation-annotations-bbox.csv"))
5360
for i in tqdm(range(len(xmin_ymin_xmax_ymax))):
5461
info = xmin_ymin_xmax_ymax.iloc[i]
55-
if info['ImageID'] in __imageids:
56-
__imageids_and_bbox[info['ImageID']] = [
57-
info['XMin'], info['YMin'], info['XMax'], info['YMax']]
62+
if info["ImageID"] in __imageids:
63+
__imageids_and_bbox[info["ImageID"]] = [
64+
info["XMin"],
65+
info["YMin"],
66+
info["XMax"],
67+
info["YMax"],
68+
]
5869
del xmin_ymin_xmax_ymax
5970

6071
urls = pd.read_csv(
61-
'./open_images_data/oidv6-train-images-with-labels-with-rotation.csv')
62-
urls.append(pd.read_csv(
63-
'./open_images_data/test-images-with-rotation.csv'))
64-
urls.append(pd.read_csv(
65-
'./open_images_data/train-images-boxable-with-rotation.csv'))
66-
urls.append(pd.read_csv(
67-
'./open_images_data/validation-images-with-rotation.csv'))
72+
"./open_images_data/oidv6-train-images-with-labels-with-rotation.csv")
73+
urls.append(pd.read_csv("./open_images_data/test-images-with-rotation.csv"))
74+
urls.append(
75+
pd.read_csv("./open_images_data/train-images-boxable-with-rotation.csv"))
76+
urls.append(
77+
pd.read_csv("./open_images_data/validation-images-with-rotation.csv"))
6878
for i in tqdm(range(len(urls))):
6979
url = urls.iloc[i]
70-
if url['ImageID'] in __imageids:
71-
urlretrieve(url['OriginalURL'], f"./data/{image_id}.png")
72-
xmin, ymin, xmax, ymax = __imageids_and_bbox[url['ImageID']]
80+
if url["ImageID"] in __imageids:
81+
urlretrieve(url["OriginalURL"], f"./data/{image_id}.png")
82+
xmin, ymin, xmax, ymax = __imageids_and_bbox[url["ImageID"]]
7383
file_names.append(f"./data/{image_id}.png")
74-
type_of_data.append(url['Subset'])
75-
imageurls.append(url['OriginalURL'])
76-
imageurls_original.append(url['OriginalLandingURL'])
77-
imageids.append(url['ImageID'])
84+
type_of_data.append(url["Subset"])
85+
imageurls.append(url["OriginalURL"])
86+
imageurls_original.append(url["OriginalLandingURL"])
87+
imageids.append(url["ImageID"])
7888
xmins.append(xmin)
7989
ymins.append(ymin)
8090
xmaxs.append(xmax)
8191
ymaxs.append(ymax)
8292
image_id += 1
8393

8494
data = pd.DataFrame({
85-
'ImageIds': imageids,
86-
'XMin': xmins,
87-
'YMin': ymins,
88-
'XMax': xmaxs,
89-
'YMax': ymaxs,
90-
'File Name': file_names,
91-
'ImageUrls': imageurls,
92-
'Og_ImageUrls': imageurls_original,
93-
'Type of Data': type_of_data,
95+
"ImageIds": imageids,
96+
"XMin": xmins,
97+
"YMin": ymins,
98+
"XMax": xmaxs,
99+
"YMax": ymaxs,
100+
"File Name": file_names,
101+
"ImageUrls": imageurls,
102+
"Og_ImageUrls": imageurls_original,
103+
"Type of Data": type_of_data,
94104
})
95-
data.to_csv('./data.csv')
105+
data.to_csv("./data.csv")

0 commit comments

Comments
 (0)