@@ -92,7 +92,7 @@ import networkx as nx
92
92
$$
93
93
\begin{aligned}
94
94
\min_{x_{ij}} \ & \sum_{i=1}^m \sum_{j=1}^n c_{ij} x_{ij} \\
95
- \text{subject to } \ & \sum_{j=1}^n x_{ij} = p_i, & i = 1, 2, \dots, m \\
95
+ \text{使得 } \ & \sum_{j=1}^n x_{ij} = p_i, & i = 1, 2, \dots, m \\
96
96
& \sum_{i=1}^m x_{ij} = q_j, & j = 1, 2, \dots, n \\
97
97
& x_{ij} \ge 0 \\
98
98
\end{aligned}
@@ -145,7 +145,6 @@ SciPy 函数 `linprog` 需要接收决策变量的*向量*。
145
145
146
146
$$
147
147
\begin{aligned}
148
-
149
148
\min_ {X} \ & \operatorname{tr} (C' X) \\
150
149
\text{subject to } \ & X \ \mathbf{1}_ n = p \\
151
150
& X' \ \mathbf{1}_ m = q \\
173
172
174
173
$$
175
174
A \otimes B =
176
-
177
175
\begin{pmatrix}
178
176
a_ {11}B & a_ {12}B & \dots & a_ {1s}B \\
179
177
a_ {21}B & a_ {22}B & \dots & a_ {2s}B \\
222
220
$$
223
221
\begin{aligned}
224
222
\min_{z} \ & \operatorname{vec}(C)' z \\
225
- \text{subject to } \ & A z = b \\
223
+ \text{使得 } \ & A z = b \\
226
224
& z \ge 0 \\
227
225
\end{aligned}
228
226
$$ (decisionvars)
@@ -295,7 +293,6 @@ p = \begin{pmatrix}
295
293
25 \\
296
294
115 \\
297
295
60 \\
298
-
299
296
30 \\
300
297
70
301
298
\end{pmatrix}
@@ -431,7 +428,7 @@ for i in range(len(sol_found)):
431
428
print(f" 最小成本 {i}: ", cost[i])
432
429
```
433
430
434
- **啊哈!**如你所见,在这种情况下,仅仅改变约束的顺序,就会显现出两个实现相同最小成本的最优传输方案。
431
+ **啊哈!** 如你所见,在这种情况下,仅仅改变约束的顺序,就会显现出两个实现相同最小成本的最优传输方案。
435
432
436
433
这就是我们之前计算出的两个方案。
437
434
@@ -524,7 +521,7 @@ res.x.reshape((m, n), order='F')
524
521
$$
525
522
\begin{aligned}
526
523
\max_ {u_i, v_j} \ & \sum_ {i=1}^m p_i u_i + \sum_ {j=1}^n q_j v_j \\
527
- \text{subject to } \ & u_i + v_j \le c_ {ij}, \ i = 1, 2, \dots, m;\ j = 1, 2, \dots, n \\
524
+ \text{使得 } \ & u_i + v_j \le c_ {ij}, \ i = 1, 2, \dots, m;\ j = 1, 2, \dots, n \\
528
525
\end{aligned}
529
526
$$ (dualproblem)
530
527
0 commit comments