|
7 | 7 | Base.ndims(::ChebyshevTransform{N}) where {N} = N
|
8 | 8 |
|
9 | 9 | function transform(t::ChebyshevTransform{N}, 𝐱::AbstractArray) where {N}
|
10 |
| - return FFTW.r2r(𝐱, FFTW.REDFT00, 1:N) # [size(x)..., in_chs, batch] |
| 10 | + return FFTW.r2r(𝐱, FFTW.REDFT10, 1:N) # [size(x)..., in_chs, batch] |
11 | 11 | end
|
12 | 12 |
|
13 | 13 | function truncate_modes(t::ChebyshevTransform, 𝐱̂::AbstractArray)
|
14 | 14 | return view(𝐱̂, map(d->1:d, t.modes)..., :, :) # [t.modes..., in_chs, batch]
|
15 | 15 | end
|
16 | 16 |
|
17 | 17 | function inverse(t::ChebyshevTransform{N}, 𝐱̂::AbstractArray) where {N}
|
18 |
| - return FFTW.r2r( |
19 |
| - 𝐱̂ ./ (prod(2 .* (size(𝐱̂)[1:N] .- 1))), |
20 |
| - FFTW.REDFT00, |
21 |
| - 1:N, |
22 |
| - ) # [size(x)..., in_chs, batch] |
| 18 | + normalized_𝐱̂ = 𝐱̂ ./ (prod(2 .* (size(𝐱̂)[1:N] .- 1))) |
| 19 | + return FFTW.r2r(normalized_𝐱̂, FFTW.REDFT01, 1:N) # [size(x)..., in_chs, batch] |
| 20 | +end |
| 21 | + |
| 22 | +function ChainRulesCore.rrule(::typeof(FFTW.r2r), x::AbstractArray, kind, dims) |
| 23 | + y = FFTW.r2r(x, kind, dims) |
| 24 | + (M,) = size(x)[dims] |
| 25 | + r2r_pullback(Δ) = (NoTangent(), ∇r2r(unthunk(Δ), kind, dims, M), NoTangent(), NoTangent()) |
| 26 | + return y, r2r_pullback |
| 27 | +end |
| 28 | + |
| 29 | +function ∇r2r(Δ::AbstractArray, kind, dims, M) |
| 30 | + # derivative of r2r turns out to be r2r + a rank 4 correction |
| 31 | + Δx = FFTW.r2r(Δ, kind, dims) |
| 32 | + |
| 33 | + # a1 = fill!(similar(A, M), one(T)) |
| 34 | + # CUDA.@allowscalar a1[1] = a1[end] = zero(T) |
| 35 | + |
| 36 | + # a2 = fill!(similar(A, M), one(T)) |
| 37 | + # a2[1:2:end] .= -one(T) |
| 38 | + # CUDA.@allowscalar a2[1] = a2[end] = zero(T) |
| 39 | + |
| 40 | + # e1 = fill!(similar(A, M), zero(T)) |
| 41 | + # CUDA.@allowscalar e1[1] = one(T) |
| 42 | + |
| 43 | + # eN = fill!(similar(A, M), zero(T)) |
| 44 | + # CUDA.@allowscalar eN[end] = one(T) |
| 45 | + |
| 46 | + # @tullio Δx[s, i, b] += |
| 47 | + # a1[i] * e1[k] * Δ[s, k, b] - a2[i] * eN[k] * Δ[s, k, b] |
| 48 | + # @tullio Δx[s, i, b] += |
| 49 | + # eN[i] * a2[k] * Δ[s, k, b] - e1[i] * a1[k] * Δ[s, k, b] |
| 50 | + return Δx |
23 | 51 | end
|
0 commit comments