File tree Expand file tree Collapse file tree 1 file changed +2
-6
lines changed Expand file tree Collapse file tree 1 file changed +2
-6
lines changed Original file line number Diff line number Diff line change @@ -11,16 +11,10 @@ properties.
11
11
Section Operations.
12
12
13
13
Definition predconj {X : UU} (p q : X → hProp) : X → hProp := (λ x : X, (p x) ∧ (q x)).
14
-
15
- Infix "p ∧ q" := (predconj p q) (at level 25).
16
14
17
15
Definition preddisj {X : UU} (p q : X → hProp) : X → hProp := (λ x : X, (p x) ∨ (q x)).
18
16
19
- Infix "p ∨ q" := (preddisj p q) (at level 25).
20
-
21
17
Definition predneg {X : UU} (p : X → hProp) : X → hProp := (λ x : X, hneg (p x)).
22
-
23
- Notation "¬ p" := (predneg p) (at level 35).
24
18
25
19
Definition preddirprod {X Y : UU} (p : X → hProp) (q : Y → hProp) : (X × Y) → hProp := (λ x : X × Y, (p (pr1 x)) ∧ (q (pr2 x))).
26
20
@@ -36,4 +30,6 @@ Section Operations.
36
30
37
31
Definition truepred (X : UU) : X → hProp := (λ _ , htrue).
38
32
33
+ Definition falsepred (X : UU) : X → hProp := (λ _, hfalse).
34
+
39
35
End Operations.
You can’t perform that action at this time.
0 commit comments