|
299 | 299 | "plt.title(team_a);"
|
300 | 300 | ]
|
301 | 301 | },
|
| 302 | + { |
| 303 | + "cell_type": "markdown", |
| 304 | + "metadata": {}, |
| 305 | + "source": [ |
| 306 | + "### Change since start of season" |
| 307 | + ] |
| 308 | + }, |
| 309 | + { |
| 310 | + "cell_type": "code", |
| 311 | + "execution_count": null, |
| 312 | + "metadata": {}, |
| 313 | + "outputs": [], |
| 314 | + "source": [ |
| 315 | + "model_team = get_fitted_team_model(CURRENT_SEASON, 1, session)\n", |
| 316 | + "select_idx = jnp.array([list(model_team.teams).index(t) for t in CURRENT_TEAMS], dtype=int)\n", |
| 317 | + "a_mean_1 = model_team.attack.mean(axis=0)[select_idx]\n", |
| 318 | + "b_mean_1 = model_team.defence.mean(axis=0)[select_idx]\n", |
| 319 | + "\n", |
| 320 | + "model_team = get_fitted_team_model(CURRENT_SEASON, NEXT_GAMEWEEK, session)\n", |
| 321 | + "select_idx = jnp.array([list(model_team.teams).index(t) for t in CURRENT_TEAMS], dtype=int)\n", |
| 322 | + "a_mean_2 = model_team.attack.mean(axis=0)[select_idx]\n", |
| 323 | + "b_mean_2 = model_team.defence.mean(axis=0)[select_idx]" |
| 324 | + ] |
| 325 | + }, |
| 326 | + { |
| 327 | + "cell_type": "code", |
| 328 | + "execution_count": null, |
| 329 | + "metadata": {}, |
| 330 | + "outputs": [], |
| 331 | + "source": [ |
| 332 | + "fig, ax = plt.subplots(1, 1, figsize=(9, 9))\n", |
| 333 | + "ax.set_aspect(\"equal\")\n", |
| 334 | + "\n", |
| 335 | + "for a_1, b_1, a_2, b_2 in zip(a_mean_1, b_mean_1, a_mean_2, b_mean_2, strict=True):\n", |
| 336 | + " plt.arrow(\n", |
| 337 | + " a_1,\n", |
| 338 | + " b_1,\n", |
| 339 | + " a_2 - a_1,\n", |
| 340 | + " b_2 - b_1,\n", |
| 341 | + " width=0.005,\n", |
| 342 | + " length_includes_head=True,\n", |
| 343 | + " )\n", |
| 344 | + "plt.xlabel(\"attack\", fontsize=14)\n", |
| 345 | + "plt.ylabel(\"defence\", fontsize=14)\n", |
| 346 | + "\n", |
| 347 | + "for idx, team in enumerate(CURRENT_TEAMS):\n", |
| 348 | + " #ax.annotate(team, (a_mean_2[idx] - 0.03, b_mean_2[idx] + 0.02), fontsize=12)\n", |
| 349 | + " ax.annotate(team, (a_mean_2[idx] - 0.02, b_mean_2[idx] + 0.005), fontsize=12)" |
| 350 | + ] |
| 351 | + }, |
302 | 352 | {
|
303 | 353 | "cell_type": "code",
|
304 | 354 | "execution_count": null,
|
305 | 355 | "metadata": {},
|
306 | 356 | "outputs": [],
|
307 |
| - "source": [] |
| 357 | + "source": [ |
| 358 | + "a_mean = np.full((len(CURRENT_TEAMS), NEXT_GAMEWEEK), np.nan)\n", |
| 359 | + "b_mean = np.full((len(CURRENT_TEAMS), NEXT_GAMEWEEK), np.nan)\n", |
| 360 | + "\n", |
| 361 | + "for gw in range(1, NEXT_GAMEWEEK + 1):\n", |
| 362 | + " model_team = get_fitted_team_model(CURRENT_SEASON, gw, session)\n", |
| 363 | + " select_idx = jnp.array(\n", |
| 364 | + " [list(model_team.teams).index(t) for t in CURRENT_TEAMS], dtype=int\n", |
| 365 | + " )\n", |
| 366 | + " a_mean[:, gw - 1] = model_team.attack.mean(axis=0)[select_idx]\n", |
| 367 | + " b_mean[:, gw - 1] = model_team.defence.mean(axis=0)[select_idx]" |
| 368 | + ] |
| 369 | + }, |
| 370 | + { |
| 371 | + "cell_type": "code", |
| 372 | + "execution_count": null, |
| 373 | + "metadata": {}, |
| 374 | + "outputs": [], |
| 375 | + "source": [ |
| 376 | + "fig = plt.figure(figsize=(8, 8))\n", |
| 377 | + "for a_team, b_team, team in zip(a_mean, b_mean, CURRENT_TEAMS, strict=True):\n", |
| 378 | + " plt.plot(a_team, b_team, marker=\"o\", label=team)\n", |
| 379 | + " plt.annotate(team, (a_team[-1] - 0.02, b_team[-1] + 0.01), fontsize=12)\n", |
| 380 | + "plt.xlabel(\"Attack\")\n", |
| 381 | + "plt.ylabel(\"Defence\")\n", |
| 382 | + "plt.axis(\"equal\")\n", |
| 383 | + "fig.legend(loc=\"outside lower center\", ncol=len(CURRENT_TEAMS) / 4, bbox_to_anchor=(0.5, -0.07))" |
| 384 | + ] |
| 385 | + }, |
| 386 | + { |
| 387 | + "cell_type": "code", |
| 388 | + "execution_count": null, |
| 389 | + "metadata": {}, |
| 390 | + "outputs": [], |
| 391 | + "source": [ |
| 392 | + "fig, ax = plt.subplots(1, 2, figsize=(16, 6), sharex=True)\n", |
| 393 | + "for idx, team in enumerate(CURRENT_TEAMS):\n", |
| 394 | + " ax[0].plot(\n", |
| 395 | + " np.arange(1, NEXT_GAMEWEEK + 1),\n", |
| 396 | + " a_mean[idx],\n", |
| 397 | + " marker=\"o\",\n", |
| 398 | + " label=team,\n", |
| 399 | + " )\n", |
| 400 | + " ax[1].plot(\n", |
| 401 | + " np.arange(1, NEXT_GAMEWEEK + 1),\n", |
| 402 | + " b_mean[idx],\n", |
| 403 | + " marker=\"o\",\n", |
| 404 | + " label=team,\n", |
| 405 | + " )\n", |
| 406 | + "ax[0].set_xlabel(\"Gameweek\")\n", |
| 407 | + "ax[1].set_xlabel(\"Gameweek\")\n", |
| 408 | + "ax[0].set_title(\"Attack\")\n", |
| 409 | + "ax[1].set_title(\"Defence\")\n", |
| 410 | + "fig.legend(loc=\"outside lower center\", ncol=len(CURRENT_TEAMS) / 2, bbox_to_anchor=(0.5, -0.15))\n" |
| 411 | + ] |
308 | 412 | }
|
309 | 413 | ],
|
310 | 414 | "metadata": {
|
|
323 | 427 | "name": "python",
|
324 | 428 | "nbconvert_exporter": "python",
|
325 | 429 | "pygments_lexer": "ipython3",
|
326 |
| - "version": "3.12.7" |
| 430 | + "version": "3.12.11" |
327 | 431 | }
|
328 | 432 | },
|
329 | 433 | "nbformat": 4,
|
|
0 commit comments