diff --git a/src/abft-player-state.md b/src/abft-player-state.md index c5587c3d..7ec807f1 100644 --- a/src/abft-player-state.md +++ b/src/abft-player-state.md @@ -69,7 +69,20 @@ We define two functions \\( \mu(S, r, p), \sigma(S, r, p) \\), which are defined as follows: The _frozen value_ \\( \mu(S, r, p) \\) is defined as the _proposal-value_ \\( v \\) -in the proposal vote in round \\( r \\) and period \\( p \\) with the minimal credential. +in the proposal vote in round \\( r \\) and period \\( p \\) that minimizes a credential +priority function \\( \Priority(v) \\). + +Let + +- \\( I_j \\) be the address of a distinct player identified by the subscript \\( j \\), +- \\( w_j \\) be the weight of the proposal vote for \\( v \\) by player \\( I_j \\), +- \\( y \\) be the result of the signing procedure for \\( v \\) by player \\( I_j \\). + +Then the priority function is defined as + +$$ +\Priority(v) = \min_{i \in [0, w_j)} \left\\{ \Hash \left( \VRF.\ProofToHash(y) || I_j || i \right) \right\\} +$$ More formally, then, let @@ -79,8 +92,14 @@ $$ where \\( V \\) is the set of votes in \\( S \\). -Then if \\( \Vote_l(r, p, 0, v_l) \\) is the vote with the smallest weight in -\\( V_{r, p} \\), then \\( \mu(S, r, p) = v_l \\). +Now if \\( \Vote(r, p, 0, v_{min}) \in V_{r, p, 0} \\) is the vote for the proposal +value \\( v_\text{min} \\) such that + +$$ +v_\text{min} = \min_{\Vote(I, \ldots , v) \in V_{r, p, 0}}\\{\Priority(v)\\} +$$ + +then \\( \mu(S, r, p) = v_{min} \\). If \\( V_{r, p} \\) is empty, then \\( \mu(S, r, p) = \bot \\).