Skip to content

ValueError: setting an array element with a sequence. The requested array has an inhomogeneous shape after 1 dimensions. The detected shape was (6,) + inhomogeneous part.Β #589

@liansekongyk

Description

@liansekongyk

(yolo) E:\download\anaconda\envs\ssd.pytorch-master>python train.py
E:\download\anaconda\envs\ssd.pytorch-master\ssd.py:34: UserWarning: volatile was removed and now has no effect. Use with torch.no_grad(): instead.
self.priors = Variable(self.priorbox.forward(), volatile=True)
Loading base network...
Initializing weights...
E:\download\anaconda\envs\ssd.pytorch-master\train.py:218: UserWarning: nn.init.xavier_uniform is now deprecated in favor of nn.init.xavier_uniform_.
init.xavier_uniform(param)
Loading the dataset...
Training SSD on: VOC0712
Using the specified args:
Namespace(dataset='VOC', dataset_root='E:/download/anaconda/envs/ssd.pytorch-master/data/VOCdevkit/', basenet='vgg16_reducedfc.pth', batch_size=32, resume=None, start_iter=0, num_workers=4, cuda=True, lr=0.001, momentum=0.9, weight_decay=0.0005, gamma=0.1, visdom=False, save_folder='weights/')
Traceback (most recent call last):
File "E:\download\anaconda\envs\ssd.pytorch-master\train.py", line 259, in
train()
File "E:\download\anaconda\envs\ssd.pytorch-master\train.py", line 169, in train
images, targets = next(batch_iterator)
File "E:\download\anaconda\envs\yolo\lib\site-packages\torch\utils\data\dataloader.py", line 633, in next
data = self._next_data()
File "E:\download\anaconda\envs\yolo\lib\site-packages\torch\utils\data\dataloader.py", line 1345, in _next_data
return self._process_data(data)
File "E:\download\anaconda\envs\yolo\lib\site-packages\torch\utils\data\dataloader.py", line 1371, in _process_data
data.reraise()
File "E:\download\anaconda\envs\yolo\lib\site-packages\torch_utils.py", line 644, in reraise
raise exception
ValueError: Caught ValueError in DataLoader worker process 0.
Original Traceback (most recent call last):
File "E:\download\anaconda\envs\yolo\lib\site-packages\torch\utils\data_utils\worker.py", line 308, in _worker_loop
data = fetcher.fetch(index)
File "E:\download\anaconda\envs\yolo\lib\site-packages\torch\utils\data_utils\fetch.py", line 51, in fetch
data = [self.dataset[idx] for idx in possibly_batched_index]
File "E:\download\anaconda\envs\yolo\lib\site-packages\torch\utils\data_utils\fetch.py", line 51, in
data = [self.dataset[idx] for idx in possibly_batched_index]
File "E:\download\anaconda\envs\ssd.pytorch-master\data\voc0712.py", line 115, in getitem
im, gt, h, w = self.pull_item(index)
File "E:\download\anaconda\envs\ssd.pytorch-master\data\voc0712.py", line 134, in pull_item
img, boxes, labels = self.transform(img, target[:, :4], target[:, 4])
File "E:\download\anaconda\envs\ssd.pytorch-master\utils\augmentations.py", line 417, in call
return self.augment(img, boxes, labels)
File "E:\download\anaconda\envs\ssd.pytorch-master\utils\augmentations.py", line 52, in call
img, boxes, labels = t(img, boxes, labels)
File "E:\download\anaconda\envs\ssd.pytorch-master\utils\augmentations.py", line 238, in call
mode = random.choice(self.sample_options)
File "mtrand.pyx", line 920, in numpy.random.mtrand.RandomState.choice
ValueError: setting an array element with a sequence. The requested array has an inhomogeneous shape after 1 dimensions. The detected shape was (6,) + inhomogeneous part.

for all the code ,I change three place
one and two is the way of file
COCO_ROOT = osp.join('E:/download/anaconda/envs/ssd.pytorch-master/data/coco/') in coco.py
VOC_ROOT = osp.join("E:/download/anaconda/envs/ssd.pytorch-master/data/VOCdevkit/") in VOC0721.py
three is in train.py for the error (RuntimeError: Expected a 'cuda' device type for generator but found 'cpu')
# data_loader = data.DataLoader(dataset, args.batch_size,
# num_workers=args.num_workers,
# shuffle=True, collate_fn=detection_collate,
# pin_memory=True)
data_loader = data.DataLoader(dataset, args.batch_size,
num_workers=args.num_workers,
shuffle=True, collate_fn=detection_collate,
pin_memory=True, generator=torch.Generator(device='cuda'))
that's all.I think I didn't change any parameter.

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions