|
53 | 53 | "from astroquery.vizier import Vizier\n", |
54 | 54 | "import scipy.optimize\n", |
55 | 55 | "# Make plots display in notebooks\n", |
56 | | - "%matplotlib inline " |
| 56 | + "%matplotlib inline" |
57 | 57 | ] |
58 | 58 | }, |
59 | 59 | { |
|
85 | 85 | "cell_type": "markdown", |
86 | 86 | "metadata": {}, |
87 | 87 | "source": [ |
88 | | - "This catalog has a lot of information, but for this tutorial we are going to work only with periods and magnitudes. Let's grab them using the keywords `'Period'` and `__Ksmag__`. Note that `'e__Ksmag_'` refers to the error bars in the magnitude measurements." |
| 88 | + "This catalog has a lot of information, but for this tutorial we are going to work only with periods and magnitudes. Let's grab them using the keywords `'Period'` and `<Ksmag>`. Note that `'e_<Ksmag>'` refers to the error bars in the magnitude measurements." |
89 | 89 | ] |
90 | 90 | }, |
91 | 91 | { |
|
94 | 94 | "metadata": {}, |
95 | 95 | "outputs": [], |
96 | 96 | "source": [ |
97 | | - "period = np.array(catalog[0]['Period']) \n", |
| 97 | + "period = np.array(catalog[0]['Period'])\n", |
98 | 98 | "log_period = np.log10(period)\n", |
99 | | - "k_mag = np.array(catalog[0]['__Ksmag_'])\n", |
100 | | - "k_mag_err = np.array(catalog[0]['e__Ksmag_'])" |
| 99 | + "k_mag = np.array(catalog[0]['<Ksmag>'])\n", |
| 100 | + "k_mag_err = np.array(catalog[0]['e_<Ksmag>'])" |
101 | 101 | ] |
102 | 102 | }, |
103 | 103 | { |
|
214 | 214 | "metadata": {}, |
215 | 215 | "outputs": [], |
216 | 216 | "source": [ |
217 | | - "fitter = fitting.LinearLSQFitter() " |
| 217 | + "fitter = fitting.LinearLSQFitter()" |
218 | 218 | ] |
219 | 219 | }, |
220 | 220 | { |
|
257 | 257 | "outputs": [], |
258 | 258 | "source": [ |
259 | 259 | "plt.errorbar(log_period,k_mag,k_mag_err,fmt='k.')\n", |
260 | | - "plt.plot(log_period, best_fit(log_period), color='g', linewidth=3) \n", |
| 260 | + "plt.plot(log_period, best_fit(log_period), color='g', linewidth=3)\n", |
261 | 261 | "plt.xlabel(r'$\\log_{10}$(Period [days])')\n", |
262 | 262 | "plt.ylabel('Ks')" |
263 | 263 | ] |
|
318 | 318 | "source": [ |
319 | 319 | "N = 100\n", |
320 | 320 | "x1 = np.linspace(0, 4, N) # Makes an array from 0 to 4 of N elements\n", |
321 | | - "y1 = x1**3 - 6*x1**2 + 12*x1 - 9 \n", |
| 321 | + "y1 = x1**3 - 6*x1**2 + 12*x1 - 9\n", |
322 | 322 | "# Now we add some noise to the data\n", |
323 | 323 | "y1 += np.random.normal(0, 2, size=len(y1)) #One way to add random gaussian noise\n", |
324 | 324 | "sigma = 1.5\n", |
325 | | - "y1_err = np.ones(N)*sigma " |
| 325 | + "y1_err = np.ones(N)*sigma" |
326 | 326 | ] |
327 | 327 | }, |
328 | 328 | { |
|
339 | 339 | "outputs": [], |
340 | 340 | "source": [ |
341 | 341 | "plt.errorbar(x1, y1, yerr=y1_err,fmt='k.')\n", |
342 | | - "plt.xlabel('$x_1$') \n", |
| 342 | + "plt.xlabel('$x_1$')\n", |
343 | 343 | "plt.ylabel('$y_1$')" |
344 | 344 | ] |
345 | 345 | }, |
|
357 | 357 | "outputs": [], |
358 | 358 | "source": [ |
359 | 359 | "model_poly = models.Polynomial1D(degree=3)\n", |
360 | | - "fitter_poly = fitting.LinearLSQFitter() \n", |
| 360 | + "fitter_poly = fitting.LinearLSQFitter()\n", |
361 | 361 | "best_fit_poly = fitter_poly(model_poly, x1, y1, weights = 1.0/y1_err)" |
362 | 362 | ] |
363 | 363 | }, |
|
477 | 477 | "outputs": [], |
478 | 478 | "source": [ |
479 | 479 | "plt.errorbar(x1, y1, yerr=y1_err,fmt='k.')\n", |
480 | | - "plt.plot(x1, best_fit_poly(x1), color='r', linewidth=3, label='LinearLSQFitter()') \n", |
| 480 | + "plt.plot(x1, best_fit_poly(x1), color='r', linewidth=3, label='LinearLSQFitter()')\n", |
481 | 481 | "plt.plot(x1, best_fit_poly_2(x1), color='g', linewidth=3, label='SimplexLSQFitter()')\n", |
482 | 482 | "plt.xlabel(r'$\\log_{10}$(Period [days])')\n", |
483 | 483 | "plt.ylabel('Ks')\n", |
|
753 | 753 | "y3 = 5.0 * np.sin(2 * np.pi * x3)\n", |
754 | 754 | "y3 = np.array([y_point + np.random.normal(0, 1) for y_point in y3])\n", |
755 | 755 | "sigma = 1.5\n", |
756 | | - "y3_err = np.ones(N)*sigma " |
| 756 | + "y3_err = np.ones(N)*sigma" |
757 | 757 | ] |
758 | 758 | }, |
759 | 759 | { |
|
0 commit comments