@@ -77,7 +77,7 @@ void build_graph_linear(it_lab_ai::Tensor& input, it_lab_ai::Tensor& output,
77
77
it_lab_ai::Tensor tmp_values = tensor;
78
78
it_lab_ai::Tensor tmp_bias = it_lab_ai::make_tensor (tensor.get_bias ());
79
79
auto conv_layer = std::make_shared<it_lab_ai::ConvolutionalLayer>(
80
- 1 , pads, 1 , tmp_values, tmp_bias, impl2);
80
+ 1 , pads, 1 , tmp_values, tmp_bias, impl2, 1 );
81
81
conv_layer->setName (it_lab_ai::kConvolution );
82
82
layers.push_back (conv_layer);
83
83
layerpostop.push_back (false );
@@ -344,7 +344,7 @@ void build_graph(it_lab_ai::Tensor& input, it_lab_ai::Tensor& output,
344
344
size_t stride = 1 ;
345
345
size_t pads = 0 ;
346
346
size_t group = 1 ;
347
- std::vector< size_t > dilations = { 1 , 1 } ;
347
+ size_t dilations = 1 ;
348
348
std::vector<size_t > pads_vec = {0 , 0 , 0 , 0 };
349
349
350
350
if (layer_data.contains (" attributes" )) {
@@ -383,8 +383,7 @@ void build_graph(it_lab_ai::Tensor& input, it_lab_ai::Tensor& output,
383
383
attributes[" dilations" ].is_array ()) {
384
384
auto dilations_array = attributes[" dilations" ];
385
385
if (dilations_array.size () >= 2 ) {
386
- dilations = {dilations_array[0 ].get <size_t >(),
387
- dilations_array[1 ].get <size_t >()};
386
+ dilations = dilations_array[0 ].get <size_t >();
388
387
}
389
388
}
390
389
}
@@ -394,7 +393,7 @@ void build_graph(it_lab_ai::Tensor& input, it_lab_ai::Tensor& output,
394
393
it_lab_ai::Tensor tmp_bias = it_lab_ai::make_tensor (tensor.get_bias ());
395
394
396
395
auto conv_layer = std::make_shared<it_lab_ai::ConvolutionalLayer>(
397
- stride, pads, group , tmp_tensor, tmp_bias, impl2);
396
+ stride, pads, dilations , tmp_tensor, tmp_bias, impl2, group );
398
397
conv_layer->setName (it_lab_ai::kConvolution );
399
398
layer = conv_layer;
400
399
} else if (layer_type.find (" Relu" ) != std::string::npos ||
0 commit comments