- 
                Notifications
    You must be signed in to change notification settings 
- Fork 58
Milestone
Description
As reported here, there is a regression in 0.14.0 for desirability objectives.
Minimal example
import pandas as pd
from baybe.acquisition import ProbabilityOfImprovement
from baybe.objectives import DesirabilityObjective
from baybe.parameters import NumericalContinuousParameter
from baybe.recommenders import BotorchRecommender
from baybe.targets import NumericalTarget
searchspace = NumericalContinuousParameter("p", [0, 1]).to_searchspace()
targets = [NumericalTarget("t1"), NumericalTarget("t2")]
objective = DesirabilityObjective(
    targets, scalarizer="MEAN", require_normalization=False
)
recommender = BotorchRecommender()
candidates = pd.DataFrame({"p": [0.2, 0.3]})
measurements = pd.DataFrame(
    {
        "p": [0.1, 0.4, 0.6, 0.8],
        "t1": [0.2, 0.5, 0.7, 0.9],
        "t2": [0.3, 0.6, 0.4, 0.8],
    }
)
acqf = recommender.acquisition_values(
    candidates,
    searchspace,
    objective,
    measurements,
    acquisition_function=ProbabilityOfImprovement(),
)
print(acqf)baybe.exceptions.IncompatibilityError: The selected analytic acquisition 'ProbabilityOfImprovement' can handle one target only but the specified objective comprises 2 targets: ['t1', 't2']Metadata
Metadata
Assignees
Labels
No labels