Skip to content

Commit 97bcbe1

Browse files
authored
Update index.md
1 parent 33f36c1 commit 97bcbe1

File tree

1 file changed

+12
-9
lines changed
  • content/blogs/fastvideo_post_training

1 file changed

+12
-9
lines changed

content/blogs/fastvideo_post_training/index.md

Lines changed: 12 additions & 9 deletions
Original file line numberDiff line numberDiff line change
@@ -29,15 +29,6 @@ draft = false
2929

3030
## The FastWan Series
3131

32-
With this blog, we are releasing the following models and their recipes:
33-
| Model | Sparse Distillation | Dataset |
34-
|:-------------------------------------------------------------------------------------------: |:---------------------------------------------------------------------------------------------------------------: |:--------------------------------------------------------------------------------------------------------: |
35-
| [FastWan2.1-T2V-1.3B](https://huggingface.co/FastVideo/FastWan2.1-T2V-1.3B-Diffusers) | [Recipe](https://github.com/hao-ai-lab/FastVideo/tree/main/examples/distill/Wan2.1-T2V/Wan-Syn-Data-480P) | [FastVideo Synthetic Wan2.1 480P](https://huggingface.co/datasets/FastVideo/Wan-Syn_77x448x832_600k) |
36-
| [FastWan2.1-T2V-14B-Preview](https://huggingface.co/FastVideo/FastWan2.1-T2V-14B-Diffusers) | Coming soon! | [FastVideo Synthetic Wan2.1 720P](https://huggingface.co/datasets/FastVideo/Wan-Syn_77x768x1280_250k) |
37-
| [FastWan2.2-TI2V-5B-FullAttn-Diffusers](https://huggingface.co/FastVideo/FastWan2.2-TI2V-5B-FullAttn-Diffusers) | [Recipe](https://github.com/hao-ai-lab/FastVideo/tree/main/examples/distill/Wan2.2-TI2V-5B-Diffusers/Data-free) | [FastVideo Synthetic Wan2.2 720P](https://huggingface.co/datasets/FastVideo/Wan2.2-Syn-121x704x1280_32k) |
38-
39-
40-
For FastWan2.2-TI2V-5B-FullAttn, since its sequence length is short (~20K), it does not benifit much from sparse attention. We only train it with DMD and full attention. We are actively working on applying sparse distillation to 14B models for both Wan2.1 and Wan2.2. Follow our progress at our [Github](https://github.com/hao-ai-lab/FastVideo), [Slack](https://join.slack.com/t/fastvideo/shared_invite/zt-38u6p1jqe-yDI1QJOCEnbtkLoaI5bjZQ) and [Discord](https://discord.gg/Dm8F2peD3e)!
4132

4233
### How Fast is FastWan?
4334
{{< image src="img/fastwan.png" alt="denoising speedup" width="100%" >}}
@@ -75,6 +66,18 @@ FastWan is runnable on a wide range of hardware with [FastVideo](https://github.
7566
[VRAM v.s. Model size v.s. Resolution Table]
7667
#### FastWan2.2-TI2V-5B -->
7768

69+
### Models and Recipes
70+
71+
With this blog, we are releasing the following models and their recipes:
72+
| Model | Sparse Distillation | Dataset |
73+
|:-------------------------------------------------------------------------------------------: |:---------------------------------------------------------------------------------------------------------------: |:--------------------------------------------------------------------------------------------------------: |
74+
| [FastWan2.1-T2V-1.3B](https://huggingface.co/FastVideo/FastWan2.1-T2V-1.3B-Diffusers) | [Recipe](https://github.com/hao-ai-lab/FastVideo/tree/main/examples/distill/Wan2.1-T2V/Wan-Syn-Data-480P) | [FastVideo Synthetic Wan2.1 480P](https://huggingface.co/datasets/FastVideo/Wan-Syn_77x448x832_600k) |
75+
| [FastWan2.1-T2V-14B-Preview](https://huggingface.co/FastVideo/FastWan2.1-T2V-14B-Diffusers) | Coming soon! | [FastVideo Synthetic Wan2.1 720P](https://huggingface.co/datasets/FastVideo/Wan-Syn_77x768x1280_250k) |
76+
| [FastWan2.2-TI2V-5B-FullAttn-Diffusers](https://huggingface.co/FastVideo/FastWan2.2-TI2V-5B-FullAttn-Diffusers) | [Recipe](https://github.com/hao-ai-lab/FastVideo/tree/main/examples/distill/Wan2.2-TI2V-5B-Diffusers/Data-free) | [FastVideo Synthetic Wan2.2 720P](https://huggingface.co/datasets/FastVideo/Wan2.2-Syn-121x704x1280_32k) |
77+
78+
79+
For FastWan2.2-TI2V-5B-FullAttn, since its sequence length is short (~20K), it does not benifit much from sparse attention. We only train it with DMD and full attention. We are actively working on applying sparse distillation to 14B models for both Wan2.1 and Wan2.2. Follow our progress at our [Github](https://github.com/hao-ai-lab/FastVideo), [Slack](https://join.slack.com/t/fastvideo/shared_invite/zt-38u6p1jqe-yDI1QJOCEnbtkLoaI5bjZQ) and [Discord](https://discord.gg/Dm8F2peD3e)!
80+
7881

7982
## Sparse Distillation: Making Video Generation Go Brrrr
8083
Video diffusion models are incredibly powerful, but they've long been held back by two major bottlenecks:

0 commit comments

Comments
 (0)