|
| 1 | +#! @Chapter Examples and Tests |
| 2 | + |
| 3 | +#! @Section Basic Commands |
| 4 | + |
| 5 | +LoadPackage( "LinearAlgebraForCAP" );; |
| 6 | + |
| 7 | +#! @Example |
| 8 | +Q := HomalgFieldOfRationals();; |
| 9 | +vec := MatrixCategoryPrecompiled( Q );; |
| 10 | +a := MatrixCategoryObject( vec, 3 ); |
| 11 | +#! <A vector space object over Q of dimension 3> |
| 12 | +HasIsProjective( a ) and IsProjective( a ); |
| 13 | +#! true |
| 14 | +ap := 3/vec;; |
| 15 | +IsEqualForObjects( a, ap ); |
| 16 | +#! true |
| 17 | +b := MatrixCategoryObject( vec, 4 ); |
| 18 | +#! <A vector space object over Q of dimension 4> |
| 19 | +homalg_matrix := HomalgMatrix( [ [ 1, 0, 0, 0 ], |
| 20 | + [ 0, 1, 0, -1 ], |
| 21 | + [ -1, 0, 2, 1 ] ], 3, 4, Q ); |
| 22 | +#! <A 3 x 4 matrix over an internal ring> |
| 23 | +alpha := VectorSpaceMorphism( a, homalg_matrix, b ); |
| 24 | +#! <A morphism in Category of matrices over Q> |
| 25 | +Display( alpha ); |
| 26 | +#! [ [ 1, 0, 0, 0 ], |
| 27 | +#! [ 0, 1, 0, -1 ], |
| 28 | +#! [ -1, 0, 2, 1 ] ] |
| 29 | +#! |
| 30 | +#! A morphism in Category of matrices over Q |
| 31 | +alphap := homalg_matrix/vec;; |
| 32 | +IsCongruentForMorphisms( alpha, alphap ); |
| 33 | +#! true |
| 34 | +homalg_matrix := HomalgMatrix( [ [ 1, 1, 0, 0 ], |
| 35 | + [ 0, 1, 0, -1 ], |
| 36 | + [ -1, 0, 2, 1 ] ], 3, 4, Q ); |
| 37 | +#! <A 3 x 4 matrix over an internal ring> |
| 38 | +beta := VectorSpaceMorphism( a, homalg_matrix, b ); |
| 39 | +#! <A morphism in Category of matrices over Q> |
| 40 | +CokernelObject( alpha ); |
| 41 | +#! <A vector space object over Q of dimension 1> |
| 42 | +c := CokernelProjection( alpha );; |
| 43 | +Display( c ); |
| 44 | +#! [ [ 0 ], |
| 45 | +#! [ 1 ], |
| 46 | +#! [ -1/2 ], |
| 47 | +#! [ 1 ] ] |
| 48 | +#! |
| 49 | +#! A split epimorphism in Category of matrices over Q |
| 50 | +gamma := UniversalMorphismIntoDirectSum( [ c, c ] );; |
| 51 | +Display( gamma ); |
| 52 | +#! [ [ 0, 0 ], |
| 53 | +#! [ 1, 1 ], |
| 54 | +#! [ -1/2, -1/2 ], |
| 55 | +#! [ 1, 1 ] ] |
| 56 | +#! |
| 57 | +#! A morphism in Category of matrices over Q |
| 58 | +colift := CokernelColift( alpha, gamma );; |
| 59 | +IsEqualForMorphisms( PreCompose( c, colift ), gamma ); |
| 60 | +#! true |
| 61 | +FiberProduct( alpha, beta ); |
| 62 | +#! <A vector space object over Q of dimension 2> |
| 63 | +F := FiberProduct( alpha, beta ); |
| 64 | +#! <A vector space object over Q of dimension 2> |
| 65 | +p1 := ProjectionInFactorOfFiberProduct( [ alpha, beta ], 1 ); |
| 66 | +#! <A morphism in Category of matrices over Q> |
| 67 | +Display( PreCompose( p1, alpha ) ); |
| 68 | +#! [ [ 0, 1, 0, -1 ], |
| 69 | +#! [ -1, 0, 2, 1 ] ] |
| 70 | +#! |
| 71 | +#! A morphism in Category of matrices over Q |
| 72 | +Pushout( alpha, beta ); |
| 73 | +#! <A vector space object over Q of dimension 5> |
| 74 | +i1 := InjectionOfCofactorOfPushout( [ alpha, beta ], 1 ); |
| 75 | +#! <A morphism in Category of matrices over Q> |
| 76 | +i2 := InjectionOfCofactorOfPushout( [ alpha, beta ], 2 ); |
| 77 | +#! <A morphism in Category of matrices over Q> |
| 78 | +u := UniversalMorphismFromDirectSum( [ b, b ], [ i1, i2 ] ); |
| 79 | +#! <A morphism in Category of matrices over Q> |
| 80 | +Display( u ); |
| 81 | +#! [ [ 0, 1, 1, 0, 0 ], |
| 82 | +#! [ 1, 0, 1, 0, -1 ], |
| 83 | +#! [ -1/2, 0, 1/2, 1, 1/2 ], |
| 84 | +#! [ 1, 0, 0, 0, 0 ], |
| 85 | +#! [ 0, 1, 0, 0, 0 ], |
| 86 | +#! [ 0, 0, 1, 0, 0 ], |
| 87 | +#! [ 0, 0, 0, 1, 0 ], |
| 88 | +#! [ 0, 0, 0, 0, 1 ] ] |
| 89 | +#! |
| 90 | +#! A morphism in Category of matrices over Q |
| 91 | +KernelObjectFunctorial( u, IdentityMorphism( Source( u ) ), u ) = IdentityMorphism( MatrixCategoryObject( vec, 3 ) ); |
| 92 | +#! true |
| 93 | +IsZero( CokernelObjectFunctorial( u, IdentityMorphism( Range( u ) ), u ) ); |
| 94 | +#! true |
| 95 | +DirectProductFunctorial( [ u, u ] ) = DirectSumFunctorial( [ u, u ] ); |
| 96 | +#! true |
| 97 | +CoproductFunctorial( [ u, u ] ) = DirectSumFunctorial( [ u, u ] ); |
| 98 | +#! true |
| 99 | +IsOne( FiberProductFunctorial( [ u, u ], [ IdentityMorphism( Source( u ) ), IdentityMorphism( Source( u ) ) ], [ u, u ] ) ); |
| 100 | +#! true |
| 101 | +IsOne( PushoutFunctorial( [ u, u ], [ IdentityMorphism( Range( u ) ), IdentityMorphism( Range( u ) ) ], [ u, u ] ) ); |
| 102 | +#! true |
| 103 | +IsCongruentForMorphisms( (1/2) * alpha, alpha * (1/2) ); |
| 104 | +#! true |
| 105 | +Dimension( HomomorphismStructureOnObjects( a, b ) ) = Dimension( a ) * Dimension( b ); |
| 106 | +#! true |
| 107 | +IsCongruentForMorphisms( |
| 108 | + PreCompose( [ u, DualOnMorphisms( i1 ), DualOnMorphisms( alpha ) ] ), |
| 109 | + InterpretMorphismFromDistinguishedObjectToHomomorphismStructureAsMorphism( Source( u ), Source( alpha ), |
| 110 | + PreCompose( |
| 111 | + InterpretMorphismAsMorphismFromDistinguishedObjectToHomomorphismStructure( DualOnMorphisms( i1 ) ), |
| 112 | + HomomorphismStructureOnMorphisms( u, DualOnMorphisms( alpha ) ) |
| 113 | + ) |
| 114 | + ) |
| 115 | +); |
| 116 | +#! true |
| 117 | +vec := CapCategory( alpha );; |
| 118 | +t := TensorUnit( vec );; |
| 119 | +z := ZeroObject( vec );; |
| 120 | +IsCongruentForMorphisms( |
| 121 | + ZeroObjectFunctorial( vec ), |
| 122 | + InterpretMorphismFromDistinguishedObjectToHomomorphismStructureAsMorphism( z, z, ZeroMorphism( t, z ) ) |
| 123 | +); |
| 124 | +#! true |
| 125 | +IsCongruentForMorphisms( |
| 126 | + ZeroObjectFunctorial( vec ), |
| 127 | + InterpretMorphismFromDistinguishedObjectToHomomorphismStructureAsMorphism( |
| 128 | + z, z, |
| 129 | + InterpretMorphismAsMorphismFromDistinguishedObjectToHomomorphismStructure( ZeroObjectFunctorial( vec ) ) |
| 130 | + ) |
| 131 | +); |
| 132 | +#! true |
| 133 | +right_side := PreCompose( [ i1, DualOnMorphisms( u ), u ] );; |
| 134 | +x := SolveLinearSystemInAbCategory( [ [ i1 ] ], [ [ u ] ], [ right_side ] )[1];; |
| 135 | +IsCongruentForMorphisms( PreCompose( [ i1, x, u ] ), right_side ); |
| 136 | +#! true |
| 137 | +#! @EndExample |
0 commit comments