From 145d411879125861f2c9edcad9874f2449fa796d Mon Sep 17 00:00:00 2001 From: Mireille Louys Date: Tue, 17 Jun 2025 17:31:52 +0200 Subject: [PATCH 1/9] update sect. 4 & 5+ typo correction, harmonize table names --- Appendix.tex | 30 ++++---- ObsCoreExtensionForRadioData.tex | 114 +++++++++---------------------- 2 files changed, 46 insertions(+), 98 deletions(-) diff --git a/Appendix.tex b/Appendix.tex index 49c0c18..c593235 100644 --- a/Appendix.tex +++ b/Appendix.tex @@ -24,7 +24,7 @@ \subsection{Use case - s\_resolution\_min} \begin{verbatim} SELECT * FROM ivoa.obscore -NATURAL JOIN ivoa.obscore-radio +NATURAL JOIN ivoa.obscore_radio WHERE s_resolution_min > 0.017 AND (target_name = 'Virgo A' OR @@ -42,7 +42,7 @@ \subsection{Use case - s\_resolution\_max} \begin{verbatim} SELECT * FROM ivoa.obscore -NATURAL JOIN ivoa.obscore-radio +NATURAL JOIN ivoa.obscore_radio WHERE s_resolution_max < 0.017 AND (target_name = 'IC443' OR @@ -59,7 +59,7 @@ \subsection{Use case - s\_fov\_min - large field of views} II Target name = Abell 194 or position inside 15 arcmin from 21.5054167, -1.3672221 \\ \begin{verbatim} SELECT * FROM ivoa.obscore -NATURAL JOIN ivoa.obscore-radio +NATURAL JOIN ivoa.obscore_radio WHERE s_fov_min > 0.8 AND (target_name = 'Abell 194' OR CONTAINS(POINT(s_ra,s_dec),CIRCLE(21.5054167,-1.3672221,0.25)) = 1)) @@ -74,7 +74,7 @@ \subsection{Use case - s\_fov\_min - extended target completly included} II. The circle defined by the minimum FOV of the dataset fully contains the circle delimiting Pictor A. \\ \begin{verbatim} SELECT * FROM ivoa.obscore -NATURAL JOIN ivoa.obscore-radio +NATURAL JOIN ivoa.obscore_radio WHERE target_name = 'Pictor A' AND CONTAINS(CIRCLE(79.9571789, -45.7788479,(8/60)/2), CIRCLE(s_ra, s_dec, s_fov_min/2)) = 1) @@ -92,7 +92,7 @@ \subsection{Use case - dataproduct\_type} \begin{verbatim} SELECT * FROM ivoa.obscore -NATURAL JOIN ivoa.obscore-radio +NATURAL JOIN ivoa.obscore_radio WHERE obs_collection EQ 'INAF-Medicina, single dish' AND (em_min >=20000 AND em_max <= 21000) AND (dataproduct_type EQ 'spatial profile' OR scan_mode LIKE "*map*") @@ -112,7 +112,7 @@ \subsection{Use case - f\_resolution, frequency ranges} \begin{verbatim} SELECT *, 299792458 / em_max as f_min, 299792458 / em_min as f_max FROM ivoa.obscore -NATURAL JOIN ivoa.obscore-radio +NATURAL JOIN ivoa.obscore_radio WHERE dataproduct_type = 'cube' AND f_resolution < 1000000 AND 299792458 / em_max > 1.0 e+9 AND @@ -145,7 +145,7 @@ \subsection{Use case - high resolution data around FRB targets } \textit{Give me high-resolution data on possible persistent radio sources within an arc second of FRB 121102:} \begin{verbatim} -SELECT * FROM ivoa.obscore NATURAL JOIN ivoa.obscore-radio +SELECT * FROM ivoa.obscore NATURAL JOIN ivoa.obscore_radio WHERE CONTAINS(POINT(s_ra,s_dec),CIRCLE(82.99458,33.14794,0.0003)) = 1 AND s_resolution_max < 0.001 \end{verbatim} @@ -157,7 +157,7 @@ \subsection{Use case - reasonable fidelity} \begin{verbatim} SELECT * FROM ivoa.obscore -NATURAL JOIN ivoa.obscore-radio +NATURAL JOIN ivoa.obscore_radio WHERE CONTAINS(POINT(s_ra,s_dec),CIRCLE(24.4212500,33.1588889,0.003)) = 1 AND s_largest_angular_scale > 0.018 AND uv_distribution_fill > 0.2 @@ -180,8 +180,6 @@ \subsection{ use case - visibility data product and target object selection } AND target_name = 'Fornax cluster' \end{verbatim} - - \subsection{Use case - maximum angular scale selection} \textit{Any visibility dataset Within an arcec around FRB 121102 where maximum angular scale is larger than 1 minute .}\\ \\ Show me all datasets satisfying:\\ @@ -190,7 +188,7 @@ \subsection{Use case - maximum angular scale selection} III. Position within 1 arcsec of 82.99458 + 33.14794 \begin{verbatim} SELECT * FROM ivoa.obscore - NATURAL JOIN ivoa.obscore-radio + NATURAL JOIN ivoa.obscore_radio WHERE dataproduct_type = 'visibility' AND s_largest_angular_scale_max > 0.018 AND CONTAINS(POINT(s_ra,s_dec),CIRCLE(82.99458, 33.14794,0.0003)) = 1)) @@ -207,7 +205,7 @@ \subsection{Use case - maximum angular scale selection with reasonable fidelity} V. Position within 1 arcsec of 82.99458 + 33.14794 \begin{verbatim} SELECT * FROM ivoa.obscore - NATURAL JOIN ivoa.obscore-radio + NATURAL JOIN ivoa.obscore_radio WHERE dataproduct_type = 'visibilty' AND s_largest_angular_scale_max > 0.018 AND uv_distribution_fill > 0.7 @@ -225,7 +223,7 @@ \subsection{Use case - time selection } \begin{verbatim} SELECT * FROM ivoa.obscore - NATURAL JOIN ivoa.obscore-radio + NATURAL JOIN ivoa.obscore_radio WHERE instr_type = 'beamForming' AND dataproduct_type = 'timeseries' AND t_resolution < 0.1 AND @@ -242,7 +240,7 @@ \subsection{Use case - instrument type and mode selection } IV. position inside 3 arcmin around 187.2779159404900 +02.0523882305500 \begin{verbatim} SELECT * FROM ivoa.obscore - NATURAL JOIN ivoa.obscore-radio + NATURAL JOIN ivoa.obscore_radio WHERE instr_type = 'SD' AND scan_mode = 'raster' AND (target_name = '3C 273' OR @@ -261,7 +259,7 @@ \subsection{Use case - instrument type and frequency selection } \begin{verbatim} SELECT * FROM ivoa.obscore - NATURAL JOIN ivoa.obscore-radio + NATURAL JOIN ivoa.obscore_radio WHERE (instr_type = 'SD' OR instr_type = 'beamForming') AND 299792458 / em_max > 500 @@ -279,7 +277,7 @@ \subsection{Use case - instrument parameters selection } III. antenna maximum distance in meters > 5000 \\ \begin{verbatim} - SELECT * FROM ivoa.obscore-radio + SELECT * FROM ivoa.obscore_radio WHERE instr_type = 'interferometry' AND instr_tel_number > 40 AND instr_tel_max_dist > 5000 diff --git a/ObsCoreExtensionForRadioData.tex b/ObsCoreExtensionForRadioData.tex index e7e040d..17bdbeb 100644 --- a/ObsCoreExtensionForRadioData.tex +++ b/ObsCoreExtensionForRadioData.tex @@ -353,8 +353,8 @@ \subsection{Frequency characterization} \begin{itemize} \item compute two free parameters \emph{f\_min} and \emph{f\_max} this way \emph{f\_min} = c / \emph{em\_max} and \emph{f\_max} = c / \emph{em\_min} with c = 299 792 458 m/s \item express queries and results in terms of frequencies by using the same formulae in the ADQL queries (see \ref{sec:FreqRanges}) - - \item let the interface do these conversions + \item let the interface do these conversions + \item use User Defined Functions on TAP services, like \emph{ivo\_interval\_overlaps, ivo\_specconv} \end{itemize} %\textit{To avoid inconsistency between the core attributes \emph{em\_min, em\_max} and \emph{em\_respower} and these additional quantities we suggest to compute these new quantities when building a view on top of the basic ObsCore table. The frequency attributes MUST be expressed in Hz to allow interoperability.} @@ -362,11 +362,8 @@ \subsection{Frequency characterization} \subsection{Spatial frequency coverage for visibilities } These parameters are valid for interferometry only. -%uv\_distance\_min and uv\_distance\_max are straigthforward. The absolute \emph{uv}\_distance\_min and \emph{uv}\_distance\_max in the \emph{uv} plane give some outlier minimum and maximum scale in some direction. -%are evaluated by fitting an ellipse on the visibilities present in the uv plane. -% Mireille but still for the spec it is good to redefine them here To compute the ellipse's eccentricity of the \emph{uv} distribution a principal component analysis (PCA) with 2 components is performed over the data points sampling the \emph{uv} plane to select the main axis of data scattering. @@ -426,7 +423,7 @@ \subsection{Observational configuration and instrumental parameters} The scanning strategy adopted in an observation is described by the parameter \emph{scan\_mode}. This parameter covers both spatial and frequency scanning modes (see Sect.~\ref{subsec:sd} for details and table~\ref{tab:scanmode} for possible values). -It is applicable to SD as well as interferometry cases. +It is applicable to SD as well as to interferometry cases. \begin{longtable}{ | p{5cm}| p{7cm}| } @@ -450,11 +447,10 @@ \subsection{Observational configuration and instrumental parameters} % \texttt{target}&\texttt{extrasolar target follow up}\cr \sptablerule -\caption{Values and definitions of the scan-mode attribute.} +\caption{Values and definitions of the scan\_mode attribute.} \label{tab:scanmode} \end{longtable} - Pointing mode distinguishes observations pointed on a fixed target from observations fixed on a given elevation and azimuth. %In addition the wobble mode observes both the source and the surrounding background. @@ -470,20 +466,20 @@ \subsection{Observational configuration and instrumental parameters} % \item Wobble : observations measuring both the source and the surroundings \end{itemize} -\subsection{Auxiliary datasets useful for data quality estimation} +\subsection{Auxiliary datasets for data quality estimation} Auxiliary datasets such as \emph{uv} distribution map, dirty beam maps, frequency/amplitude plots, phase/amplitude plots are useful for astronomers to check data quality. -In that case DataLink \citep{2023ivoa.spec.1215B} may provide a solution to attach these auxiliary data to ObsCore records. The \texttt{semantics} FIELD in the \{link\} -response will contain \#auxiliary for links to these maps or plots while the \texttt{content\_qualifier} FIELD introduced from 1.1 could contain a term from a defined vocabulary (to be defined) following the IVOA vocabulary definition \citep{2021ivoa.spec.0525D}. +In that case, DataLink \citep{2023ivoa.spec.1215B} may provide a solution to attach these auxiliary data files to ObsCore records. The link , described in the specification as \{link\} +response will contain \#auxiliary in the \texttt{semantics} FIELD to bind maps or plots and a term identifying the nature of the data file in the \texttt{content\_qualifier} FIELD. Such a term would belong to a defined vocabulary following the IVOA vocabulary definition \citep{2021ivoa.spec.0525D} . See the example below. +% insert data link example table here \section{The ivoa.obscore\_radio table} \label{sec:implementation} The ObsCore Extension for Radio is accessed as a table within a TAP -\citep{2019ivoa.spec.0927D} service.\footnote{I think we should require a -few UDFs on TAP services: ivo\_interval\_overlaps, ivo\_specconv} At this +\citep{2019ivoa.spec.0927D} service. At this point, the name of this table is fixed to \verb|ivoa.obscore_radio|. -Within the ivoa, it is forbidden to use this name for anything else than a table compliant +Within the IVOA, it is forbidden to use this name for anything else than a table compliant with this specification. %However, in order to allow for later evolution -- which may allow @@ -492,63 +488,28 @@ \section{The ivoa.obscore\_radio table} A TAP service that has \verb|ivoa.obscore_radio| must also have a table compliant to any version 1 of ObsCore, i.e., a table -\verb|ivoa.obscore| containing only the basic ObsCore attributes. -the two tables must share exactly the obs\_publisher\_did -column such +\verb|ivoa.obscore| containing only the basic ObsCore attributes. The two tables must share exactly the \emph{obs\_publisher\_did} column such that a \verb|NATURAL JOIN| will yield per-dataset rows of obscore and radio extension metadata. -%Which columns these are is site-specific. To ensure that all compliant services can execute the same queries, -all columns in tables~\ref{tab:ExtensionAtt} and \ref{tab:ExtensionAtt_instrumental} must be present in such a -table, although any may be NULL. At least a foreign key into \verb|ivoa.obscore| will typically -make the extension table user-visible. Additional free columns (such as \emph{f\_min}, \emph{f\_max} ) may also -be added.\footnote{can we make rules such that such additional columns -will not interfere with later extensions?}. +all columns described in following tables ~\ref{tab:ExtensionAtt} , ~\ref{tab:ExtensionAtt_interferometry} and \ref{tab:ExtensionAtt_instrumental} must be gathered in the \verb|ivoa.obscore_radio| +table, although some of them may be NULL if no value apply . At least a foreign key into \verb|ivoa.obscore| will typically +make the extension table user-visible. +%Additional free columns (such as \emph{f\_min}, \emph{f\_max} ) may also be added. +%\footnote{can we make rules such that such additional columns will not interfere with later extensions?}. The intention is that clients will write queries like \begin{lstlisting} SELECT [any obscore and obscore_radio columns or expressions] -FROM - ivoa.obscore - NATURAL JOIN ivoa.obscore_radio -WHERE - [constraints] +FROM ivoa.obscore +NATURAL JOIN ivoa.obscore_radio +WHERE [constraints] \end{lstlisting} %In addition a view performing this JOIN is included in the ivoa schema in %order to make it directly available for service users . -% commented below: FB version -%The ObsCore Extension for Radio data is accessed in a table containing also ObsCore fields within a TAP -%\citep{2019ivoa.spec.0927D} service.\todo{I think we should require a -%few UDFs on TAP services: ivo\_interval\_overlaps, ivo\_specconv} At this -%point, the name of this table is fixed to \verb|ivoa.obscore_radio|. -%However, in order to allow for later evolution -- which may allow -%multiple compliant tables per service --, this name should not be used -%for discovery (see sect.~\ref{sec:registry}). -% -%A TAP service that has \verb|ivoa.obscore_radio| must also have a table -%compliant to any version 1 of ObsCore, i.e., a table -%\verb|ivoa.obscore|; containing only the basic ObsCore attributes. -%This table can be implemented as a simple view on the \verb|ivoa.obscore_radio| -%table -% -%To ensure that all compliant services can execute the same queries, -%all columns in table~\ref{tab:ExtensionAtt} must be present in such a -%table, although any may be NULL. Additional columns may be present\todo{can we make rules such that such additional columns -% -%will not interfere with later extensions?}. -% -%The intention is that clients will write queries like -%\begin{lstlisting} -%SELECT [any obscore and obs_radio columns or expressions] -%FROM -%ivoa.obscore_radio -% -%WHERE -%[constraints] -%\end{lstlisting} % commented : Markus initial PR %without having to know the exact foreign key(s) in use on any given %service. This means that while one service can opt to join on @@ -584,7 +545,7 @@ \section{The ivoa.obscore\_radio table} \sptablerule \texttt{f\_resolution}&\texttt{absolute spectral resolution in frequency}&\texttt{Char.SpectralAxis.\newline Coverage.Bounds\newline Limits.HiLim}&{em.freq;stat.max}&Khz\cr \sptablerule -\caption{ObsCore extension proposal for radio data in general.} +\caption{ObsCore extension columns proposal for radio data in general.} \label{tab:ExtensionAtt} \end{longtable} \end{landscape} @@ -626,7 +587,7 @@ \section{The ivoa.obscore\_radio table} %\sptablerule %\texttt{frequency\_amplitude}&\texttt{dirty beam}&\texttt{via DataLink}&{via DataLink}&&interferometry\cr %\sptablerule -\caption{ObsCore extension proposal for radio interferometry.} +\caption{ObsCore extension columns proposal for radio interferometry.} \label{tab:ExtensionAtt_interferometry} \end{longtable} \end{landscape} @@ -653,7 +614,7 @@ \section{The ivoa.obscore\_radio table} \texttt{tracking\_type}&\texttt{target tracking modes}&\texttt{Provenance.\newline Observation.\newline tracking\_mode}&instr.param& \cr \sptablerule -\caption{ObsCore radio extension proposal for instrumental parameters.} +\caption{ObsCore radio extension columns for instrumental parameters.} \label{tab:ExtensionAtt_instrumental} \end{longtable} \end{landscape} @@ -704,9 +665,7 @@ \section{Registry Aspects} Services compliant with this specification are registered using VODataService \citep{2021ivoa.spec.1102D} tablesets. Compliant tables use the utype -$$ -\hbox{\nolinkurl{ivo://ivoa.net/std/ObsCore#radioExt-1.0}.} -$$ +$$ \hbox{\nolinkurl{ivo://ivoa.net/std/ObsCore#radioExt-1.0}.} $$ % %The view table providing the %join between the basic ObsCore table and the obscore\_radio table @@ -725,22 +684,17 @@ \section{Registry Aspects} record with the main TAP service as an auxiliary capability \citep{2019ivoa.spec.0520D}. In this way, meaningful information on coverage in space, time, and spectral axes as per VODataService 1.2 can -be communicated to the Registry, which, again, data providers are urged +be communicated to the Registry, which data providers are urged to do. %There is no expectation that the coverage information only %pertains to data with entries in \verb|ivoa.obscore_radio|, i.e., it may be %a copy of the coverage of the basic ObsCore table.\footnote{Is that %acceptable? Or should we require pure radio coverage?} - -However, discovering the obscore\_radio table alone would be irrelevant because querying this -extension table per se doesn't make sense. The same service delivering the \verb|obscore_radio| table -MUST also contain the ObsCore table. +However, discovering the \verb|obscore_radio| table alone would be irrelevant. The same service delivering the \verb|obscore_radio| table MUST also contain the ObsCore table. Being sure our service contains these both tables, the user is able to build any natural JOIN query between these two tables. - - %A sample registry record for an obscore\_radio table comes with this %specification\footnote{\auxiliaryurl{sample-record.xml}}. @@ -763,7 +717,7 @@ \section{Registry Aspects} AND intf_role='std' AND table_utype LIKE 'ivo://ivoa.net/std/ObsCore#radioExt-1.%' AND EXISTS (select 1 from rr.res_table where - table_name LIKE '%obscore') + table_name LIKE '%obscore') \end{lstlisting} In the current status of the ObsCore specification the last statement in the WHERE clause @@ -774,11 +728,11 @@ \section{Registry Aspects} table_utype LIKE 'ivo://ivoa.net/std/obscore#core-1.%') \end{lstlisting} -When we will have other extensions (for example for time) we may want to -discover services which deliver several extensions in addition to obscore +When we will have other extensions (for example for time series or high energy data) we may want to +discover services which supporting several extensions in addition to the obscore main table. -This could be done by queries such as +Querying ObsTAP services with multiple extensions could be done by querying the relational registry such as: \begin{lstlisting} SELECT DISTINCT(access_url), table_name @@ -800,14 +754,12 @@ \section{Registry Aspects} \hbox{\nolinkurl{ivo://ivoa.net/std/ObsCore#timeExt-1.0}} $$ -In addition the schema containing the ObsCore main table and potentially some of the extensions +In addition the TAP schema containing the ObsCore main table and potentially some of the extensions SHOULD use the root ObsCore standardID utype : $$ \hbox{\nolinkurl{ivo://ivoa.net/std/ObsCore}} $$ - - -in such a way that the query +Then the following query would allow to discover all services exposing ObsCore metadata as well as which extension tables they deliver. \begin{lstlisting} SELECT DISTINCT(access_url), table_name, schema_name @@ -821,9 +773,7 @@ \section{Registry Aspects} AND schema_utype LIKE 'ivo://ivoa.net/std/ObsCore' \end{lstlisting} -would allow to discover all services delivering ObsCore and which extension tables they deliver. - - +\newpage \appendix \input{Appendix.tex} From 9a4dd85e95c86912bdced1422dc19312cccb0f05 Mon Sep 17 00:00:00 2001 From: Mireille Louys Date: Tue, 17 Jun 2025 19:13:14 +0200 Subject: [PATCH 2/9] update_section_4.5 --- ObsCoreExtensionForRadioData.tex | 139 ++++++++++++++++--------------- 1 file changed, 70 insertions(+), 69 deletions(-) diff --git a/ObsCoreExtensionForRadioData.tex b/ObsCoreExtensionForRadioData.tex index 17bdbeb..4cf0f31 100644 --- a/ObsCoreExtensionForRadioData.tex +++ b/ObsCoreExtensionForRadioData.tex @@ -426,27 +426,27 @@ \subsection{Observational configuration and instrumental parameters} It is applicable to SD as well as to interferometry cases. -\begin{longtable}{ | p{5cm}| p{7cm}| } -\sptablerule +\begin{longtable}{ | p{4.5cm}| p{7cm}| } +\hline \textbf{value}&\textbf{definition}\cr -\sptablerule -\sptablerule +\hline +\hline \texttt{on-source}&pointed measurement\cr -\sptablerule +\hline \texttt{on-off}&switched measurements between two positions (source and background)\cr -\sptablerule +\hline \texttt{raster-map}&successive measurement spots on a rectangular mesh\cr -\sptablerule +\hline \texttt{on-the-fly-cross-scan}&successive continuous measurements along two orthogonal directions\cr -\sptablerule +\hline \texttt{on-the-fly-map}&successive continuous measurements along parallel directions\cr -\sptablerule +\hline \texttt{skydip}&long strip of measurements\cr -\sptablerule +\hline \texttt{frequency-switching}&switch from line frequency band to a lineless frequency band \cr % \texttt{target}&\texttt{extrasolar target follow up}\cr -\sptablerule +\hline \caption{Values and definitions of the scan\_mode attribute.} \label{tab:scanmode} \end{longtable} @@ -531,20 +531,20 @@ \section{The ivoa.obscore\_radio table} %first table \begin{landscape} -\begin{longtable}{ l p{4cm}| p{4cm}| l l |} -\sptablerule -\textbf{column name}&\textbf{definition}&\textbf{utype}&\textbf{ucd}&\textbf{unit}\cr -\sptablerule -\texttt{ s\_resolution\_min}&\texttt{ Angular resolution, longest baseline and max frequency dependent}&{ Char.SpatialAxis.\newline Resolution.Bounds.\newline Limits.LoLim}&{pos.angResolution;stat.min}&{arcsec}\cr -\sptablerule -\texttt{s\_resolution\_max}&\texttt{Angular resolution, longest baseline and min frequency dependent}&\texttt{Char.SpatialAxis.\newline Resolution.Bounds.\newline Limits.HiLim}&{pos.angResolution;stat.max}&arcsec\cr -\sptablerule -\texttt{s\_fov\_min}&\texttt{field of view diameter, min value, max frequency dependent}&\texttt{Char.SpatialAxis.\newline Coverage.Bounds.\newline Extent.LowLim}&{phys.angSize;instr.fov;\newline stat.min}°\cr -\sptablerule -\texttt{s\_fov\_max}&\texttt{field of view diameter, max value, min frequency dependent}&\texttt{Char.SpatialAxis.\newline Coverage.Bounds.\newline Extent.HiLim}&{phys.angSize;instr.fov;\newline stat.max}°\cr -\sptablerule -\texttt{f\_resolution}&\texttt{absolute spectral resolution in frequency}&\texttt{Char.SpectralAxis.\newline Coverage.Bounds\newline Limits.HiLim}&{em.freq;stat.max}&Khz\cr -\sptablerule +\begin{longtable}{l p{4.5cm}| p{4cm}| l l |} +\hline +\textbf{column name}&\textbf{definition}&\textbf{utype}&\textbf{ucd}&\textbf{unit}\\ +\hline +\texttt{ s\_resolution\_min}&\texttt{ Angular resolution, \newline longest baseline and \newline max frequency dependent}&{ Char.SpatialAxis.\newline Resolution.Bounds.\newline Limits.LoLim}&{pos.angResolution;stat.min}&{arcsec}\\ +\hline +\texttt{s\_resolution\_max}&\texttt{Angular resolution, \newline longest baseline and \newline min frequency dependent}&\texttt{Char.SpatialAxis.\newline Resolution.Bounds.\newline Limits.HiLim}&{pos.angResolution;stat.max}&arcsec \\ +\hline +\texttt{s\_fov\_min}&\texttt{field of view diameter, \newline min value, \newline max frequency dependent}&\texttt{Char.SpatialAxis.\newline Coverage.Bounds.\newline Extent.LowLim}&{phys.angSize;instr.fov;\newline stat.min}°\\ +\hline +\texttt{s\_fov\_max}&\texttt{field of view diameter, \newline max value, \newline min frequency dependent}&\texttt{Char.SpatialAxis.\newline Coverage.Bounds.\newline Extent.HiLim}&{phys.angSize;instr.fov;\newline stat.max}°\\ +\hline +\texttt{f\_resolution}&\texttt{absolute spectral resolution\newline in frequency}&\texttt{Char.SpectralAxis.\newline Coverage.Bounds\newline Limits.HiLim}&{em.freq;stat.max}&Khz\\ +\hline \caption{ObsCore extension columns proposal for radio data in general.} \label{tab:ExtensionAtt} \end{longtable} @@ -552,41 +552,42 @@ \section{The ivoa.obscore\_radio table} %second table \begin{landscape} -\begin{longtable}{l p{4.5cm}| p{4cm}| l l | } -\sptablerule -\textbf{column name}&\textbf{definition}&\textbf{utype}&\textbf{ucd}&\textbf{unit}\cr -\sptablerule -\texttt{s\_largest\_angular\_scale}&\texttt{maximum scale in dataset, shortest baseline and for typical frequency}&\texttt{Char.SpatialAxis.\newline Resolution.Scale.\newline Limits.HiLim}&{phys.angSize;stat.max}&arcsec \cr -\sptablerule -\texttt{s\_largest\_angular\_scale\_min}&\texttt{smallest maximum scale in dataset, shortest baseline and for highest frequency}&\texttt{Char.SpatialAxis.\newline Resolution.Scale.\newline Limits.HiLim.Low}&{phys.angSize;stat.max}&arcsec \cr -\sptablerule -\texttt{s\_largest\_angular\_scale\_max}&\texttt{largest maximum scale in dataset, shortest baseline and for lowest frequency}&\texttt{Char.SpatialAxis.\newline Resolution.Scale.\newline Limits.HiLim.Hi}&{phys.angSize;stat.max}&arcsec \cr -\sptablerule +\begin{longtable}{l p{4.5cm}| p{4cm}| l l |} +\hline +\ +\textbf{column name}&\textbf{definition}&\textbf{utype}&\textbf{ucd}&\textbf{unit}\\ +\hline +\texttt{s\_largest\_angular\_scale}&\texttt{maximum scale in dataset, shortest baseline and for typical frequency}&\texttt{Char.SpatialAxis.\newline Resolution.Scale.\newline Limits.HiLim}&{phys.angSize;stat.max}&arcsec \\ +\hline +\texttt{s\_largest\_angular\_scale\_min}&\texttt{smallest maximum scale in dataset, shortest baseline and for highest frequency}&\texttt{Char.SpatialAxis.\newline Resolution.Scale.\newline Limits.HiLim.Low}&{phys.angSize;stat.max}&arcsec \\ +\hline +\texttt{s\_largest\_angular\_scale\_max}&\texttt{largest maximum scale in dataset, shortest baseline and for lowest frequency}&\texttt{Char.SpatialAxis.\newline Resolution.Scale.\newline Limits.HiLim.Hi}&{phys.angSize;stat.max}&arcsec \\ +\hline %\texttt{f\_min}&\texttt{spectral coverage min in frequency}&\texttt{Char.SpectralAxis.\newline Coverage.Bounds\newline Limits.LoLim}&{em.freq;stat.min}&Mhz&radio\cr -%\sptablerule +%\hline %\texttt{f\_max}&\texttt{spectral coverage max in frequency}&\texttt{Char.SpectralAxis.\newline Coverage.Bounds\newline Limits.HiLim}&{em.freq;stat.max}&Mhz&radio\cr -%\sptablerule +%\hline %\texttt{t\_exp\_min}&\texttt{minimum integration time per sample}&\texttt{Char.TimeAxis.\newline Sampling.Extent\newline LoLim}&{time.duration;obs.exposure;\newline stat.min}&s&radio\cr -%\sptablerule +%\hline %\texttt{t\_exp\_max}&\texttt{maximum integration time per sample}&\texttt{Char.TimeAxis.\newline Sampling.Extent\newline HiLim}&{time.duration;obs.exposure;\newline stat.max}&s&radio\cr -%\sptablerule +%\hline %\texttt{t\_exp\_mean}&\texttt{average integration time per sample}&\texttt{Char.TimeAxis.\newline Sampling.Extent\newline HiLim}&{time.duration;obs.exposure\newline stat.mean}&s&radio\cr -%\sptablerule -\texttt{uv\_distance\_min}&\texttt{minimal distance in uv plane}&\texttt{Char.UVAxis.Coverage\newline .Bounds.Limits.LoLim}&stat.fourier;pos;\newline stat.min&m \cr -\sptablerule -\texttt{uv\_distance\_max}&\texttt{maximal distance in uv plane}&\texttt{Char.UVAxis.Coverage\newline .Bounds.Limits.LoLim}&stat.fourier;pos;\newline stat.max&m \cr -\sptablerule -\texttt{uv\_distribution\_ecc}&\texttt{eccentricity of uv distribution}&\texttt{Char.UVAxis.Coverage\newline .Bounds.Eccentricity}&stat.fourier;pos& null \cr -\sptablerule -\texttt{uv\_distribution\_fill}&\texttt{filling factor of uv distribution}&\texttt{Char.UVAxis.Coverage\newline .Bounds.FillingFactor}&stat.fourier;pos;\newline arith.ratio& null \cr -\sptablerule +%\hline +\texttt{uv\_distance\_min}&\texttt{minimal distance in uv plane}&\texttt{Char.UVAxis.Coverage\newline .Bounds.Limits.LoLim}&stat.fourier;pos;stat.min&m \\ +\hline +\texttt{uv\_distance\_max}&\texttt{maximal distance in uv plane}&\texttt{Char.UVAxis.Coverage\newline .Bounds.Limits.LoLim}&stat.fourier;pos;stat.max&m \\ +\hline +\texttt{uv\_distribution\_ecc}&\texttt{eccentricity of uv distribution}&\texttt{Char.UVAxis.Coverage\newline .Bounds.Eccentricity}&stat.fourier;pos& null \\ +\hline +\texttt{uv\_distribution\_fill}&\texttt{filling factor of uv distribution}&\texttt{Char.UVAxis.Coverage\newline .Bounds.FillingFactor}&stat.fourier;pos;\newline arith.ratio& null \\ +\hline %\texttt{s\_beam\_dirty}&\texttt{dirty beam}&\texttt{- (via DataLink}&{via DataLink}&&interferometry\cr -%\sptablerule +%\hline %\texttt{phase\_amplitude}&\texttt{phase amplitude plot}&\texttt{via DataLink}&{via DataLink}&&interferometry\cr -%\sptablerule +%\hline %\texttt{frequency\_amplitude}&\texttt{dirty beam}&\texttt{via DataLink}&{via DataLink}&&interferometry\cr -%\sptablerule +%\hline \caption{ObsCore extension columns proposal for radio interferometry.} \label{tab:ExtensionAtt_interferometry} \end{longtable} @@ -594,25 +595,25 @@ \section{The ivoa.obscore\_radio table} %third table \begin{landscape} -\begin{longtable}{l p{4cm} | p{4cm} | l l l } -\sptablerule -\textbf{column name}&\textbf{definition}&\textbf{utype}&\textbf{ucd}&\textbf{unit}\cr -\sptablerule -\texttt{instr\_tel\_number}&\texttt{number of antennas in array}&\texttt{Provenance.ObsConfig.\newline Instrument.Array.\newline AntNumber}&meta.number;instr.param& \cr -\sptablerule +\begin{longtable}{l p{4.2cm} | p{4cm} | l l l } +\hline +\textbf{column name}&\textbf{definition}&\textbf{utype}&\textbf{ucd}&\textbf{unit}\\ +\hline +\texttt{instr\_tel\_number}&\texttt{number of antennas in array}&\texttt{Provenance.ObsConfig.\newline Instrument.Array.\newline AntNumber}&meta.number;instr.param& \\ +\hline % same for all antenae features -\texttt{instr\_tel\_min\_dist}&\texttt{minimum distance between antennas in array}&\texttt{Provenance.ObsConfig.\newline Instrument.Array.\newline MinDist}&instr.baseline;stat.min&m \cr -\sptablerule -\texttt{instr\_tel\_max\_dist}&\texttt{maximum distance between antennas in array}&\texttt{Provenance.ObsConfig.\newline Instrument.Array.\newline MaxDist}&instr.baseline;stat.max&m \cr -\sptablerule -\texttt{instr\_tel\_diameter}&\texttt{diameter of telecope or antennas in array}&\texttt{Provenance.ObsConfig.\newline Instrument.Array.\newline Diameter}&instr.param&m \cr -\sptablerule -\texttt{instr\_feed}&\texttt{number of feeds}&\texttt{Provenance.ObsConfig.\newline Instrument.Feed}&instr.param& \cr -\sptablerule -\texttt{scan\_mode}&\texttt{sky and spectral axis scan mode }&\texttt{Provenance.\newline Observation.\newline sky\_scan\_mode}&instr.param& \cr -\sptablerule -\texttt{tracking\_type}&\texttt{target tracking modes}&\texttt{Provenance.\newline Observation.\newline tracking\_mode}&instr.param& \cr -\sptablerule +\texttt{instr\_tel\_min\_dist}&\texttt{minimum distance between antennas in array}&\texttt{Provenance.ObsConfig.\newline Instrument.Array.\newline MinDist}&instr.baseline;stat.min&m \\ +\hline +\texttt{instr\_tel\_max\_dist}&\texttt{maximum distance between antennas in array}&\texttt{Provenance.ObsConfig.\newline Instrument.Array.\newline MaxDist}&instr.baseline;stat.max&m \\ +\hline +\texttt{instr\_tel\_diameter}&\texttt{diameter of telecope or antennas in array}&\texttt{Provenance.ObsConfig.\newline Instrument.Array.\newline Diameter}&instr.param&m \\ +\hline +\texttt{instr\_feed}&\texttt{number of feeds}&\texttt{Provenance.ObsConfig.\newline Instrument.Feed}&instr.param& \\ +\hline +\texttt{scan\_mode}&\texttt{sky and spectral axis scan mode }&\texttt{Provenance.\newline Observation.\newline sky\_scan\_mode}&instr.param& \\ +\hline +\texttt{tracking\_type}&\texttt{target tracking modes}&\texttt{Provenance.\newline Observation.\newline tracking\_mode}&instr.param& \\ +\hline \caption{ObsCore radio extension columns for instrumental parameters.} \label{tab:ExtensionAtt_instrumental} From 90d05c67c6ec72f41c4de8c32de8fc725b314afe Mon Sep 17 00:00:00 2001 From: Mireille Louys Date: Tue, 17 Jun 2025 19:16:53 +0200 Subject: [PATCH 3/9] end commit --- role_diagram.pdf | Bin 52332 -> 52330 bytes 1 file changed, 0 insertions(+), 0 deletions(-) diff --git a/role_diagram.pdf b/role_diagram.pdf index 651bf1de100e1ca6b9f8036a03121c0377028dcd..92ba5fd44871cd98554a62af74c90c41b933e033 100644 GIT binary patch delta 474 zcmV<00VV$Im;>sV1F+!9f4d5UFc^h*pWOeu$_(pH^xDU!8 z9OPm&D5fIL5zfwSwqne?labrJ3^vwgilTGIDCrixcG4+?T_w24A$U#&l}VbUS1vA` zNB@%(tCdc^_2law5p-}Jp)VlkHA0ht${+zWlcLHk0XUP;%4C0G6vy#%M~Fn4yp|-) ztPS!~EG(>byIwZRLIy=v3NzUt5ep?LAy!tFy2`}3!x;aB@CQg1NR97r^XWW`=RD{4 z95c)3Ll!m*S*4j%xCd6DY6WT=AyNvR`*7P0!!Zavm_CH$44h0tb`Gw$p(q2z&+xRQ z>J_RM#3odKLydplsBeYlMX?JlZ{ioCFA)2J_A=<07wgcK09QwM13Y!{A~5R0RGnyp zxSGayV73>Q-^Cv!2E{n6D%;VR&}hd!VhGL(;OanJg0F18e&eP=d_t;3XpGdF2*ihe zs0r={AYCpLFuf&Cg<{<+QP2mO33!N#esL~*@dJ;#n;j9+X2Rx(kdxDTau;U*vUE?Q QlSIrQ2r&vJB}Gq03bvry(*OVf delta 507 zcmVyX1F+!9f4vTZFcgJ%p5kmmOz6ERpoFl%=0c2{acH0^B!-ew2H##O zaXG`u`S};nu1df$`a!7nH5AUwORrI;x_gRo=8Br|ZB1uXaXPncCu187^ zMA83b$Eu~1Z=-$PBZ4=sE%XH-3pGBIfXW~NHIt#rEde=`pi&u==*mlfQ5eVZ=Z+AG zGvp|tl!Xk6tQ1BzNW_99CB)9gQdgN6cNpWJ5dHwk0;%!+Z9biI z>OAN9J;%&)xsZj;LRN0(@)VqmLuLl9x1b;m zh0pM`pw%l>%!v)C{Dvxjy;0i?jq_p$n%=}OL|-8G1+68}HY?VkBLS|q?mBp?;zeNC zg^3!`0&x|MZ^LvqEWV3BNc4+QSW&j45uw(OyTkyT<-yf~xCCF>d`;t~PJBYLNT`kE zstCk~Ce#3TeUK^@3Ygjyr$Vvrl_=1V>`h>(-r<1Bk& x_7AduPo)ZFZe(+Ga%Ev{3T19&Z(?c+b97;Hba--QW(qYiI5;v2B_%~qMhYh=@s9ui From 9ba8807c95d0cd5775823f41859cafad479d1ada Mon Sep 17 00:00:00 2001 From: Mireille Louys Date: Wed, 18 Jun 2025 11:51:47 +0200 Subject: [PATCH 4/9] update on sect. 4 &5 : iteration --- ObsCoreExtensionForRadioData.tex | 22 ++++++++++------------ 1 file changed, 10 insertions(+), 12 deletions(-) diff --git a/ObsCoreExtensionForRadioData.tex b/ObsCoreExtensionForRadioData.tex index 4cf0f31..c497f57 100644 --- a/ObsCoreExtensionForRadioData.tex +++ b/ObsCoreExtensionForRadioData.tex @@ -139,13 +139,13 @@ \section{Radio data specifities from the Data Discovery point of view} \subsection{Single dish data}\label{subsec:sd} -Single Dish observations can be done with different types of receiving systems. Typical frontends are mono-feed, multi-feed and phased array feed (PAF), the last two suitable to efficiently span wider parts of the sky. +Single Dish (SD) observations can be done with different types of receiving systems. Typical frontends are mono-feed, multi-feed and phased array feed (PAF), the last two suitable to efficiently span wider parts of the sky. Data can be acquired by various backend systems providing either the total intensity (integrated over the whole available bandwidth) or the spectroscopic/spectropolarimetric intensity (acquired in each spectral channel/sample). Data are saved as raw counts resulting from the digitization of the voltage signal measured by the receiving system. Commonly-used SD data formats are registered FITS standard conventions (FITS, SDFITS and MBFITS) or unregistered conventions like the standard FITS-based format delivered by the INAF radio telescopes. The combination of telescope, frontend and backend permits the realization of various observing strategies characterized by specific spatial and/or spectral patterns. -Typical SD observing strategies are: \texttt{on-source}, \texttt{frequency switching}, \texttt{on-off} observations, \texttt{raster} or \texttt{on-the-fly} (OTF) mapping, \texttt{on-the-fly-cross-scan}, \texttt{skydip} calibrations, see Fig~\ref{fig:SD}. For each spatial position in the observation, SD data gather emission for any of the spectral samples in the given frequency band and polarization. +Typical SD observing strategies are: \texttt{on-source}, \texttt{frequency switching}, \texttt{on-off} observations, \texttt{raster} or \texttt{on-the-fly} (OTF) mapping, \texttt{on-the-fly-cross-scan}, \texttt{skydip} calibrations (see Fig~\ref{fig:SD}). For each spatial position in the observation, SD data gather emission for any of the spectral samples in the given frequency band and polarization. If multi-feed/PAFs are used, a set of spatial positions are simultaneously measured. Scan modes should be described in ObsCore in order to allow astronomers to better understand the structure of the data which will be retrieved. Spatial resolution in the SD case is intended as the beam size. This holds true for any type of receivers, since also for multi-feed/PAF ones the spatial resolution is ruled by the size of the individual beam. @@ -171,7 +171,6 @@ \subsection{Single dish data}\label{subsec:sd} \end{figure} - \subsection{Visibility data } \label{sec:visibility} @@ -322,9 +321,9 @@ \subsection{dataproduct\_type and dataproduct\_subtype} \section{ObsCore extension specific for radio data} -Tables \ref{tab:ExtensionAtt}, \ref{tab:ExtensionAtt_interferometry} and \ref{tab:ExtensionAtt_instrumental} show the %additional -querying parameters we propose to add to ObsCore in order to better describe radio single dish and visibility data. -The last column indicates if the attribute is useful for all radio datasets or only for visibilities, beam forming, or single dish data. +Tables \ref{tab:ExtensionAtt}, \ref{tab:ExtensionAtt_interferometry} and \ref{tab:ExtensionAtt_instrumental} show the +querying parameters we propose to include into the ObsCore radio extension table in order to better describe radio single dish and visibility data. +%Change Mir june 2025 . the 3 tables sort the various medata by category : general , interferometry and instrumental . The last column indicates if the attribute is useful for all radio datasets or only for visibilities, beam forming, or single dish data. \subsection{Spatial parameters} @@ -334,7 +333,6 @@ \subsection{Spatial parameters} In the case of mapping scans or multi-feed/PAF receivers \emph{ s\_fov\_min} and \emph{s\_fov\_max} are derived as the minimum and maximum sizes of the circular region encompassing the covered area. - \emph{s\_resolution\_min, s\_resolution\_max} are estimated like the typical value by the formula $\lambda / L$ (see subsection \ref{sec:res}) where $\lambda$ is replaced respectively by the minimum and maximum wavelength of the spectral range(s). The size L is the telescope diameter for SD observations and the largest distance in the \emph{uv} plane for interferometry. Beam forming may represent an exception to this rule, see \ref{sec:res}. In the case of interferometry, we introduce the new \emph{s\_largest\_angular\_scale} which is estimated as $\lambda/l$ where $\lambda$ is the typical @@ -342,7 +340,6 @@ \subsection{Spatial parameters} The largest angular scale is also variable along the spectral range. That's why we bound it with \emph{s\_largest\_angular\_scale\_min} and \emph{s\_largest\_angular\_scale\_max} estimated as respectively $\lambda\_min/l$ and $\lambda\_max/l$ - \subsection{Frequency characterization} As was stated above (\ref{sec:specificities}) radio astronomers use frequency quantities to characterize their datasets. Therefore we introduce one additional parameters in the extension : @@ -353,10 +350,11 @@ \subsection{Frequency characterization} \begin{itemize} \item compute two free parameters \emph{f\_min} and \emph{f\_max} this way \emph{f\_min} = c / \emph{em\_max} and \emph{f\_max} = c / \emph{em\_min} with c = 299 792 458 m/s \item express queries and results in terms of frequencies by using the same formulae in the ADQL queries (see \ref{sec:FreqRanges}) - \item let the interface do these conversions - \item use User Defined Functions on TAP services, like \emph{ivo\_interval\_overlaps, ivo\_specconv} + \item let the interface do these conversions \end{itemize} +Using the ADQL User Defined Functions \citep{2024ivoa.spec.1107C} in queries for unit conversion as well as \emph{ivo\_interval\_overlaps, ivo\_specconv} would simplify the interface for the user and avoid columns duplication for the spectral coverage . + %\textit{To avoid inconsistency between the core attributes \emph{em\_min, em\_max} and \emph{em\_respower} and these additional quantities we suggest to compute these new quantities when building a view on top of the basic ObsCore table. The frequency attributes MUST be expressed in Hz to allow interoperability.} \subsection{Spatial frequency coverage for visibilities } @@ -681,7 +679,7 @@ \section{Registry Aspects} %any standardID for the extension yet. The discovery of the services and schema containing the %radio extension table MUST be done using the table\_name only as stated below. While it is admitted that the table only sits in the tableset of the -embedding TAP service, implementors are urged to use a seperate registry +embedding TAP service, implementors are urged to use a separate registry record with the main TAP service as an auxiliary capability \citep{2019ivoa.spec.0520D}. In this way, meaningful information on coverage in space, time, and spectral axes as per VODataService 1.2 can @@ -760,7 +758,7 @@ \section{Registry Aspects} $$ \hbox{\nolinkurl{ivo://ivoa.net/std/ObsCore}} $$ -Then the following query would allow to discover all services exposing ObsCore metadata as well as which extension tables they deliver. +Then the following query would allow to discover all services exposing ObsCore metadata as well as the extension tables they deliver. \begin{lstlisting} SELECT DISTINCT(access_url), table_name, schema_name From 71bbd4bf3426572d3edba7926f8846eac5122131 Mon Sep 17 00:00:00 2001 From: Mireille Louys Date: Wed, 18 Jun 2025 17:08:37 +0200 Subject: [PATCH 5/9] typo corrections sect.5 --- ObsCoreExtensionForRadioData.tex | 10 ++++------ 1 file changed, 4 insertions(+), 6 deletions(-) diff --git a/ObsCoreExtensionForRadioData.tex b/ObsCoreExtensionForRadioData.tex index c497f57..a7f997f 100644 --- a/ObsCoreExtensionForRadioData.tex +++ b/ObsCoreExtensionForRadioData.tex @@ -296,11 +296,10 @@ \subsection{o\_ucd} \subsection{t\_exptime} Total duration of the observation for the given dataset or ObsCore entry. For instance in case of multiple targets, \emph{t\_exptime} -will be computed for each source and written in the appropriate ObsCore Table entry. The specific case of time series is adressed in another +will be computed for each source and written in the appropriate ObsCore Table entry. The specific case of time series is addressed in another specification\footnote{https://www.ivoa.net/documents/ObsCoreTimeExtension/20240717/index.html, IVOA working draft}. - \subsection{t\_resolution} %Not applicable for single dish data (see Sect. \ref{subsec:sd}). The ObsCore parameter \emph{t\_resolution} (see Sect. \ref{subsec:sd}) has a limited application for SD data @@ -337,8 +336,7 @@ \subsection{Spatial parameters} In the case of interferometry, we introduce the new \emph{s\_largest\_angular\_scale} which is estimated as $\lambda/l$ where $\lambda$ is the typical wavelength (and again typical value SHOULD be estimated as the mid value of the spectral range apart from documented exceptions) and l is the typical smallest distance in the \emph{uv} plane. This parameter is not relevant for other observation modes. -The largest angular scale is also variable along the spectral range. That's why we bound it with \emph{s\_largest\_angular\_scale\_min} and \emph{s\_largest\_angular\_scale\_max} estimated as respectively $\lambda\_min/l$ and $\lambda\_max/l$ - +The largest angular scale is also variable along the spectral range. That's why we bound it with \emph{s\_largest\_angular\_scale\_min} and \emph{s\_largest\_angular\_scale\_max} estimated as respectively $\lambda\_min/l$ and $\lambda\_max/l$F \subsection{Frequency characterization} @@ -728,10 +726,10 @@ \section{Registry Aspects} \end{lstlisting} When we will have other extensions (for example for time series or high energy data) we may want to -discover services which supporting several extensions in addition to the obscore +discover services which supporting several extensions in addition to the ObsCore main table. -Querying ObsTAP services with multiple extensions could be done by querying the relational registry such as: +Searching ObsTAP services with multiple extensions could be done by a query to the relational registry such as: \begin{lstlisting} SELECT DISTINCT(access_url), table_name From e4242620b42f47cf9057c8cc8e81bbe63c592b2b Mon Sep 17 00:00:00 2001 From: Mireille Louys Date: Tue, 24 Jun 2025 15:55:38 +0200 Subject: [PATCH 6/9] scan mode definition update wrt Alessandra suggestion --- ObsCoreExtensionForRadioData.tex | 12 ++++++------ 1 file changed, 6 insertions(+), 6 deletions(-) diff --git a/ObsCoreExtensionForRadioData.tex b/ObsCoreExtensionForRadioData.tex index a7f997f..2448af1 100644 --- a/ObsCoreExtensionForRadioData.tex +++ b/ObsCoreExtensionForRadioData.tex @@ -431,19 +431,19 @@ \subsection{Observational configuration and instrumental parameters} \hline \texttt{on-off}&switched measurements between two positions (source and background)\cr \hline - \texttt{raster-map}&successive measurement spots on a rectangular mesh\cr + \texttt{raster-map}&successive measurement spots on a predefined mesh (generally regular and rectangular)\cr \hline - \texttt{on-the-fly-cross-scan}&successive continuous measurements along two orthogonal directions\cr + \texttt{on-the-fly-cross-scan}&successive continuous measurements along a predefined spatial pattern\cr \hline \texttt{on-the-fly-map}&successive continuous measurements along parallel directions\cr \hline - \texttt{skydip}&long strip of measurements\cr + \texttt{skydip}&successive continuous measurements along a large span in elevation at a given azimuth (acquired for calibration purposes)\cr \hline - \texttt{frequency-switching}&switch from line frequency band to a lineless frequency band \cr + \texttt{frequency-switching}&subsequent measurements of the same target at two different central frequencies acquired with the same receiver \cr % \texttt{target}&\texttt{extrasolar target follow up}\cr \hline -\caption{Values and definitions of the scan\_mode attribute.} +\caption{Values and definitions of the \emph{scan\_mode} attribute.} \label{tab:scanmode} \end{longtable} @@ -457,7 +457,7 @@ \subsection{Observational configuration and instrumental parameters} \begin{itemize} \item \texttt{sidereal} : observations pointed on a fixed target, as defined in ObsLocTAP - \item \texttt{fixed-az-el-transit} : observations fixed on a given elevation + \item \texttt{fixed-az-el} : observations fixed on a given elevation and azimuth, as in ObsLocTAP % \item Wobble : observations measuring both the source and the surroundings \end{itemize} From 05cf9fbdeb9d285f59cfb8e330158112fea1da49 Mon Sep 17 00:00:00 2001 From: Mireille Louys Date: Thu, 3 Jul 2025 15:17:05 +0200 Subject: [PATCH 7/9] datalink example table and corrections in texte --- ObsCoreExtensionForRadioData.tex | 40 ++++++++++++++++++++++++++++---- 1 file changed, 36 insertions(+), 4 deletions(-) diff --git a/ObsCoreExtensionForRadioData.tex b/ObsCoreExtensionForRadioData.tex index 2448af1..00c1576 100644 --- a/ObsCoreExtensionForRadioData.tex +++ b/ObsCoreExtensionForRadioData.tex @@ -336,7 +336,7 @@ \subsection{Spatial parameters} In the case of interferometry, we introduce the new \emph{s\_largest\_angular\_scale} which is estimated as $\lambda/l$ where $\lambda$ is the typical wavelength (and again typical value SHOULD be estimated as the mid value of the spectral range apart from documented exceptions) and l is the typical smallest distance in the \emph{uv} plane. This parameter is not relevant for other observation modes. -The largest angular scale is also variable along the spectral range. That's why we bound it with \emph{s\_largest\_angular\_scale\_min} and \emph{s\_largest\_angular\_scale\_max} estimated as respectively $\lambda\_min/l$ and $\lambda\_max/l$F +The largest angular scale is also variable along the spectral range. That's why we bound it with \emph{s\_largest\_angular\_scale\_min} and \emph{s\_largest\_angular\_scale\_max} estimated as respectively $\lambda\_min/l$ and $\lambda\_max/l$ \subsection{Frequency characterization} @@ -466,9 +466,41 @@ \subsection{Auxiliary datasets for data quality estimation} Auxiliary datasets such as \emph{uv} distribution map, dirty beam maps, frequency/amplitude plots, phase/amplitude plots are useful for astronomers to check data quality. -In that case, DataLink \citep{2023ivoa.spec.1215B} may provide a solution to attach these auxiliary data files to ObsCore records. The link , described in the specification as \{link\} -response will contain \#auxiliary in the \texttt{semantics} FIELD to bind maps or plots and a term identifying the nature of the data file in the \texttt{content\_qualifier} FIELD. Such a term would belong to a defined vocabulary following the IVOA vocabulary definition \citep{2021ivoa.spec.0525D} . See the example below. +In that case, DataLink \citep{2023ivoa.spec.1215B} may provide a solution to attach these auxiliary data files to ObsCore records. The link between a data set and its associated data files, is described by a set of parameters in the specification as shown in the datalink table example below. +%\{link\} response will contain \#auxiliary in the \texttt{semantics} FIELD to bind maps or plots and a term identifying the nature of the data file in the \texttt{content\_qualifier} FIELD. Such a term would belong to a defined vocabulary following the IVOA vocabulary definition \citep{2021ivoa.spec.0525D} . See the example below. % insert data link example table here +\begin{table}[h] +\begin{center} +\begin{tabular}{| l l l l l | |} +\hline +{\bf parameter} & {\bf assoc. data } & {\bf assoc. data} \\ +\hline +ID (of ObsCore record ) & ivo://aaa/bb & ivo://aaa/bb \\ +\hline +access\_url &http://atca/aaa & http://atca/bbb\\ +\hline +description & \emph{uv} coverage map & freq/amplitude plot \\ +\hline +semantics & auxiliary& auxiliary\\ +\hline +content\_type & image/png& image/png \\ +\hline +content\_length & 25000 & 500 000\\ +\hline +content\_qualifier & \footnotesize{\url{http://ivoa.net/rdf/product_type/image}} &\footnotesize{\ \url{http://myvocab/plot} }\\ +\hline +local\_semantics & uv\_distribution\_map& frequency\_amplitude \\ +\hline +\end{tabular} +\end{center} +\caption{Metadata of the datalink response for an ObsCore \emph{visibility} data set associated to two auxiliary data file : \emph{uv} map and frequency plot in their own column. } +\label{fig:linkFields} +\end{table} + + + + +%end datalink table \section{The ivoa.obscore\_radio table} \label{sec:implementation} @@ -726,7 +758,7 @@ \section{Registry Aspects} \end{lstlisting} When we will have other extensions (for example for time series or high energy data) we may want to -discover services which supporting several extensions in addition to the ObsCore +discover services supporting several extensions in addition to the ObsCore main table. Searching ObsTAP services with multiple extensions could be done by a query to the relational registry such as: From afd2f6f06fb701fdcc3fb5da1169f5c366d34c4e Mon Sep 17 00:00:00 2001 From: Mireille Louys Date: Thu, 3 Jul 2025 15:21:58 +0200 Subject: [PATCH 8/9] tableset schema mentionned in registry part --- ObsCoreExtensionForRadioData.tex | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/ObsCoreExtensionForRadioData.tex b/ObsCoreExtensionForRadioData.tex index 00c1576..c9c42fb 100644 --- a/ObsCoreExtensionForRadioData.tex +++ b/ObsCoreExtensionForRadioData.tex @@ -783,7 +783,7 @@ \section{Registry Aspects} \hbox{\nolinkurl{ivo://ivoa.net/std/ObsCore#timeExt-1.0}} $$ -In addition the TAP schema containing the ObsCore main table and potentially some of the extensions +In addition the tableset schema containing the ObsCore main table and potentially some of the extensions SHOULD use the root ObsCore standardID utype : $$ \hbox{\nolinkurl{ivo://ivoa.net/std/ObsCore}} From 35083b73aba74dd8b0526d8ee9428f8c6232285a Mon Sep 17 00:00:00 2001 From: Mireille Louys Date: Thu, 3 Jul 2025 17:08:48 +0200 Subject: [PATCH 9/9] data link table update --- ObsCoreExtensionForRadioData.tex | 21 +++++++++++---------- 1 file changed, 11 insertions(+), 10 deletions(-) diff --git a/ObsCoreExtensionForRadioData.tex b/ObsCoreExtensionForRadioData.tex index c9c42fb..c47744d 100644 --- a/ObsCoreExtensionForRadioData.tex +++ b/ObsCoreExtensionForRadioData.tex @@ -470,30 +470,31 @@ \subsection{Auxiliary datasets for data quality estimation} %\{link\} response will contain \#auxiliary in the \texttt{semantics} FIELD to bind maps or plots and a term identifying the nature of the data file in the \texttt{content\_qualifier} FIELD. Such a term would belong to a defined vocabulary following the IVOA vocabulary definition \citep{2021ivoa.spec.0525D} . See the example below. % insert data link example table here \begin{table}[h] -\begin{center} +\begin{flushleft} \begin{tabular}{| l l l l l | |} \hline -{\bf parameter} & {\bf assoc. data } & {\bf assoc. data} \\ +{\bf parameter} & {\bf DL record } & {\bf DL record} \\ \hline -ID (of ObsCore record ) & ivo://aaa/bb & ivo://aaa/bb \\ +ID & ivo://aaa/bb & ivo://aaa/bb \\ +(of ObsCore record ) & & \\ \hline access\_url &http://atca/aaa & http://atca/bbb\\ \hline -description & \emph{uv} coverage map & freq/amplitude plot \\ +description & \emph{uv} coverage map & dirty beam image \\ \hline -semantics & auxiliary& auxiliary\\ +semantics & auxiliary& calibration\\ \hline content\_type & image/png& image/png \\ \hline -content\_length & 25000 & 500 000\\ +content\_length & 25000 & 1000 000\\ \hline -content\_qualifier & \footnotesize{\url{http://ivoa.net/rdf/product_type/image}} &\footnotesize{\ \url{http://myvocab/plot} }\\ +content\_qualifier & \footnotesize{\url{www.ivoa.net/rdf/product-type#image}} & \footnotesize{\url{www.ivoa.net/rdf/product-type#image}}\\ \hline -local\_semantics & uv\_distribution\_map& frequency\_amplitude \\ +local\_semantics & uv\_distribution\_map& dirty\_beam \\ \hline \end{tabular} -\end{center} -\caption{Metadata of the datalink response for an ObsCore \emph{visibility} data set associated to two auxiliary data file : \emph{uv} map and frequency plot in their own column. } +\end{flushleft} +\caption{Metadata of the Data Link (DL) response for an ObsCore \emph{visibility} data set associated to two auxiliary data file : \emph{uv} map and dirty beam image in their own column. } \label{fig:linkFields} \end{table}