|
1 | 1 | # Metadata for loading pretrained model weights.
|
2 |
| -backbone_presets = {} |
| 2 | +backbone_presets = { |
| 3 | + "dfine_nano_coco": { |
| 4 | + "metadata": { |
| 5 | + "description": ( |
| 6 | + "D-FINE Nano model, the smallest variant in the family, " |
| 7 | + "pretrained on the COCO dataset. Ideal for applications " |
| 8 | + "where computational resources are limited." |
| 9 | + ), |
| 10 | + "params": 3788625, |
| 11 | + "path": "d_fine", |
| 12 | + }, |
| 13 | + "kaggle_handle": "kaggle://keras/d-fine/keras/dfine_nano_coco/1", |
| 14 | + }, |
| 15 | + "dfine_small_coco": { |
| 16 | + "metadata": { |
| 17 | + "description": ( |
| 18 | + "D-FINE Small model pretrained on the COCO dataset. Offers a " |
| 19 | + "balance between performance and computational efficiency." |
| 20 | + ), |
| 21 | + "params": 10329321, |
| 22 | + "path": "d_fine", |
| 23 | + }, |
| 24 | + "kaggle_handle": "kaggle://keras/d-fine/keras/dfine_small_coco/1", |
| 25 | + }, |
| 26 | + "dfine_medium_coco": { |
| 27 | + "metadata": { |
| 28 | + "description": ( |
| 29 | + "D-FINE Medium model pretrained on the COCO dataset. A solid " |
| 30 | + "baseline with strong performance for general-purpose " |
| 31 | + "object detection." |
| 32 | + ), |
| 33 | + "params": 19621160, |
| 34 | + "path": "d_fine", |
| 35 | + }, |
| 36 | + "kaggle_handle": "kaggle://keras/d-fine/keras/dfine_medium_coco/1", |
| 37 | + }, |
| 38 | + "dfine_large_coco": { |
| 39 | + "metadata": { |
| 40 | + "description": ( |
| 41 | + "D-FINE Large model pretrained on the COCO dataset. Provides " |
| 42 | + "high accuracy and is suitable for more demanding tasks." |
| 43 | + ), |
| 44 | + "params": 31344064, |
| 45 | + "path": "d_fine", |
| 46 | + }, |
| 47 | + "kaggle_handle": "kaggle://keras/d-fine/keras/dfine_large_coco/1", |
| 48 | + }, |
| 49 | + "dfine_xlarge_coco": { |
| 50 | + "metadata": { |
| 51 | + "description": ( |
| 52 | + "D-FINE X-Large model, the largest COCO-pretrained variant, " |
| 53 | + "designed for state-of-the-art performance where accuracy " |
| 54 | + "is the top priority." |
| 55 | + ), |
| 56 | + "params": 62834048, |
| 57 | + "path": "d_fine", |
| 58 | + }, |
| 59 | + "kaggle_handle": "kaggle://keras/d-fine/keras/dfine_xlarge_coco/1", |
| 60 | + }, |
| 61 | + "dfine_small_obj365": { |
| 62 | + "metadata": { |
| 63 | + "description": ( |
| 64 | + "D-FINE Small model pretrained on the large-scale Objects365 " |
| 65 | + "dataset, enhancing its ability to recognize a wider " |
| 66 | + "variety of objects." |
| 67 | + ), |
| 68 | + "params": 10623329, |
| 69 | + "path": "d_fine", |
| 70 | + }, |
| 71 | + "kaggle_handle": "kaggle://keras/d-fine/keras/dfine_small_obj365/1", |
| 72 | + }, |
| 73 | + "dfine_medium_obj365": { |
| 74 | + "metadata": { |
| 75 | + "description": ( |
| 76 | + "D-FINE Medium model pretrained on the Objects365 dataset. " |
| 77 | + "Benefits from a larger and more diverse pretraining corpus." |
| 78 | + ), |
| 79 | + "params": 19988670, |
| 80 | + "path": "d_fine", |
| 81 | + }, |
| 82 | + "kaggle_handle": "kaggle://keras/d-fine/keras/dfine_medium_obj365/1", |
| 83 | + }, |
| 84 | + "dfine_large_obj365": { |
| 85 | + "metadata": { |
| 86 | + "description": ( |
| 87 | + "D-FINE Large model pretrained on the Objects365 dataset for " |
| 88 | + "improved generalization and performance on diverse object " |
| 89 | + "categories." |
| 90 | + ), |
| 91 | + "params": 31858578, |
| 92 | + "path": "d_fine", |
| 93 | + }, |
| 94 | + "kaggle_handle": "kaggle://keras/d-fine/keras/dfine_large_obj365/1", |
| 95 | + }, |
| 96 | + "dfine_xlarge_obj365": { |
| 97 | + "metadata": { |
| 98 | + "description": ( |
| 99 | + "D-FINE X-Large model pretrained on the Objects365 dataset, " |
| 100 | + "offering maximum performance by leveraging a vast number " |
| 101 | + "of object categories during pretraining." |
| 102 | + ), |
| 103 | + "params": 63348562, |
| 104 | + "path": "d_fine", |
| 105 | + }, |
| 106 | + "kaggle_handle": "kaggle://keras/d-fine/keras/dfine_xlarge_obj365/1", |
| 107 | + }, |
| 108 | + "dfine_small_obj2coco": { |
| 109 | + "metadata": { |
| 110 | + "description": ( |
| 111 | + "D-FINE Small model first pretrained on Objects365 and then " |
| 112 | + "fine-tuned on COCO, combining broad feature learning with " |
| 113 | + "benchmark-specific adaptation." |
| 114 | + ), |
| 115 | + "params": 10329321, |
| 116 | + "path": "d_fine", |
| 117 | + }, |
| 118 | + "kaggle_handle": "kaggle://keras/d-fine/keras/dfine_small_obj2coco/1", |
| 119 | + }, |
| 120 | + "dfine_medium_obj2coco": { |
| 121 | + "metadata": { |
| 122 | + "description": ( |
| 123 | + "D-FINE Medium model using a two-stage training process: " |
| 124 | + "pretraining on Objects365 followed by fine-tuning on COCO." |
| 125 | + ), |
| 126 | + "params": 19621160, |
| 127 | + "path": "d_fine", |
| 128 | + }, |
| 129 | + "kaggle_handle": "kaggle://keras/d-fine/keras/dfine_medium_obj2coco/1", |
| 130 | + }, |
| 131 | + "dfine_large_obj2coco_e25": { |
| 132 | + "metadata": { |
| 133 | + "description": ( |
| 134 | + "D-FINE Large model pretrained on Objects365 and then " |
| 135 | + "fine-tuned on COCO for 25 epochs. A high-performance model " |
| 136 | + "with specialized tuning." |
| 137 | + ), |
| 138 | + "params": 31344064, |
| 139 | + "path": "d_fine", |
| 140 | + }, |
| 141 | + "kaggle_handle": "kaggle://keras/d-fine/keras/dfine_large_obj2coco_e25/1", |
| 142 | + }, |
| 143 | + "dfine_xlarge_obj2coco": { |
| 144 | + "metadata": { |
| 145 | + "description": ( |
| 146 | + "D-FINE X-Large model, pretrained on Objects365 and fine-tuned " |
| 147 | + "on COCO, representing the most powerful model in this " |
| 148 | + "series for COCO-style tasks." |
| 149 | + ), |
| 150 | + "params": 62834048, |
| 151 | + "path": "d_fine", |
| 152 | + }, |
| 153 | + "kaggle_handle": "kaggle://keras/d-fine/keras/dfine_xlarge_obj2coco/1", |
| 154 | + }, |
| 155 | +} |
0 commit comments