|
| 1 | +# FashionMnist VQ experiment with various settings, using FSQ. |
| 2 | +# From https://github.com/minyoungg/vqtorch/blob/main/examples/autoencoder.py |
| 3 | + |
| 4 | +from tqdm.auto import trange |
| 5 | + |
| 6 | +import math |
| 7 | +import torch |
| 8 | +import torch.nn as nn |
| 9 | +from torchvision import datasets, transforms |
| 10 | +from torch.utils.data import DataLoader |
| 11 | + |
| 12 | +from vector_quantize_pytorch import FSQ |
| 13 | + |
| 14 | + |
| 15 | +lr = 3e-4 |
| 16 | +train_iter = 1000 |
| 17 | +levels = [8, 6, 5] # target size 2^8, actual size 240 |
| 18 | +num_codes = math.prod(levels) |
| 19 | +seed = 1234 |
| 20 | +device = "cuda" if torch.cuda.is_available() else "cpu" |
| 21 | + |
| 22 | + |
| 23 | +class SimpleFSQAutoEncoder(nn.Module): |
| 24 | + def __init__(self, levels: list[int]): |
| 25 | + super().__init__() |
| 26 | + self.layers = nn.ModuleList( |
| 27 | + [ |
| 28 | + nn.Conv2d(1, 16, kernel_size=3, stride=1, padding=1), |
| 29 | + nn.MaxPool2d(kernel_size=2, stride=2), |
| 30 | + nn.GELU(), |
| 31 | + nn.Conv2d(16, 8, kernel_size=3, stride=1, padding=1), |
| 32 | + nn.Conv2d(8, 8, kernel_size=6, stride=3, padding=0), |
| 33 | + FSQ(levels), |
| 34 | + nn.ConvTranspose2d(8, 8, kernel_size=6, stride=3, padding=0), |
| 35 | + nn.Conv2d(8, 16, kernel_size=4, stride=1, padding=2), |
| 36 | + nn.GELU(), |
| 37 | + nn.Upsample(scale_factor=2, mode="nearest"), |
| 38 | + nn.Conv2d(16, 1, kernel_size=3, stride=1, padding=2), |
| 39 | + ] |
| 40 | + ) |
| 41 | + return |
| 42 | + |
| 43 | + def forward(self, x): |
| 44 | + for layer in self.layers: |
| 45 | + if isinstance(layer, FSQ): |
| 46 | + x, indices = layer(x) |
| 47 | + else: |
| 48 | + x = layer(x) |
| 49 | + |
| 50 | + return x.clamp(-1, 1), indices |
| 51 | + |
| 52 | + |
| 53 | +def train(model, train_loader, train_iterations=1000): |
| 54 | + def iterate_dataset(data_loader): |
| 55 | + data_iter = iter(data_loader) |
| 56 | + while True: |
| 57 | + try: |
| 58 | + x, y = next(data_iter) |
| 59 | + except StopIteration: |
| 60 | + data_iter = iter(data_loader) |
| 61 | + x, y = next(data_iter) |
| 62 | + yield x.to(device), y.to(device) |
| 63 | + |
| 64 | + for _ in (pbar := trange(train_iterations)): |
| 65 | + opt.zero_grad() |
| 66 | + x, _ = next(iterate_dataset(train_loader)) |
| 67 | + out, indices = model(x) |
| 68 | + rec_loss = (out - x).abs().mean() |
| 69 | + rec_loss.backward() |
| 70 | + |
| 71 | + opt.step() |
| 72 | + pbar.set_description( |
| 73 | + f"rec loss: {rec_loss.item():.3f} | " |
| 74 | + + f"active %: {indices.unique().numel() / num_codes * 100:.3f}" |
| 75 | + ) |
| 76 | + return |
| 77 | + |
| 78 | + |
| 79 | +transform = transforms.Compose( |
| 80 | + [transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))] |
| 81 | +) |
| 82 | +train_dataset = DataLoader( |
| 83 | + datasets.FashionMNIST( |
| 84 | + root="~/data/fashion_mnist", train=True, download=True, transform=transform |
| 85 | + ), |
| 86 | + batch_size=256, |
| 87 | + shuffle=True, |
| 88 | +) |
| 89 | + |
| 90 | +print("baseline") |
| 91 | +torch.random.manual_seed(seed) |
| 92 | +model = SimpleFSQAutoEncoder(levels).to(device) |
| 93 | +opt = torch.optim.AdamW(model.parameters(), lr=lr) |
| 94 | +train(model, train_dataset, train_iterations=train_iter) |
0 commit comments