@@ -128,9 +128,13 @@ bool ApplyProfileShapesFromProviderOptions(std::vector<nvinfer1::IOptimizationPr
128128                                           std::unordered_map<std::string, std::vector<std::vector<int64_t >>>& profile_min_shapes,
129129                                           std::unordered_map<std::string, std::vector<std::vector<int64_t >>>& profile_max_shapes,
130130                                           std::unordered_map<std::string, std::vector<std::vector<int64_t >>>& profile_opt_shapes,
131-                                            ShapeRangesMap& input_explicit_shape_ranges) {
131+                                            ShapeRangesMap& input_explicit_shape_ranges,
132+                                            const  OrtLogger* logger) {
132133  if  (trt_profiles.size () == 0 ) {
133-     //     LOGS_DEFAULT(WARNING) << "[TensorRT EP] Number of optimization profiles should be greater than 0, but it's 0.";
134+     std::string message = " [TensorRT EP] Number of optimization profiles should be greater than 0, but it's 0." 
135+     Ort::ThrowOnError (g_ort_api->Logger_LogMessage (logger,
136+                                                    OrtLoggingLevel::ORT_LOGGING_LEVEL_WARNING,
137+                                                    message.c_str (), ORT_FILE, __LINE__, __FUNCTION__));
134138    return  false ;
135139  }
136140
@@ -144,8 +148,11 @@ bool ApplyProfileShapesFromProviderOptions(std::vector<nvinfer1::IOptimizationPr
144148    input_explicit_shape_ranges[input_name] = inner_map;
145149  }
146150
147-   //   LOGS_DEFAULT(VERBOSE) << "[TensorRT EP] Begin to apply profile shapes ...";
148-   //   LOGS_DEFAULT(VERBOSE) << "[TensorRT EP] Input tensor name is '" << input_name << "', number of profiles found is " << trt_profiles.size();
151+   std::string message = " [TensorRT EP] Begin to apply profile shapes ...\n " 
152+                         std::string (" [TensorRT EP] Input tensor name is '" std::string (" ', number of profiles found is " std::to_string (trt_profiles.size ());
153+   Ort::ThrowOnError (g_ort_api->Logger_LogMessage (logger,
154+                                                  OrtLoggingLevel::ORT_LOGGING_LEVEL_VERBOSE,
155+                                                  message.c_str (), ORT_FILE, __LINE__, __FUNCTION__));
149156
150157  for  (size_t  i = 0 ; i < trt_profiles.size (); i++) {
151158    nvinfer1::Dims dims = input->getDimensions ();
@@ -158,7 +165,10 @@ bool ApplyProfileShapesFromProviderOptions(std::vector<nvinfer1::IOptimizationPr
158165      int  shape_size = nb_dims == 0  ? 1  : static_cast <int >(profile_min_shapes[input_name][i].size ());
159166      std::vector<int32_t > shapes_min (shape_size), shapes_opt (shape_size), shapes_max (shape_size);
160167
161-       //       LOGS_DEFAULT(VERBOSE) << "[TensorRT EP] shape size of this shape tensor is " << shape_size;
168+       std::string message = " [TensorRT EP] shape size of this shape tensor is " std::to_string (shape_size);
169+       Ort::ThrowOnError (g_ort_api->Logger_LogMessage (logger,
170+                                                      OrtLoggingLevel::ORT_LOGGING_LEVEL_VERBOSE,
171+                                                      message.c_str (), ORT_FILE, __LINE__, __FUNCTION__));
162172
163173      for  (int  j = 0 ; j < shape_size; j++) {
164174        auto  min_value = profile_min_shapes[input_name][i][j];
@@ -167,9 +177,12 @@ bool ApplyProfileShapesFromProviderOptions(std::vector<nvinfer1::IOptimizationPr
167177        shapes_min[j] = static_cast <int32_t >(min_value);
168178        shapes_max[j] = static_cast <int32_t >(max_value);
169179        shapes_opt[j] = static_cast <int32_t >(opt_value);
170-         //         LOGS_DEFAULT(VERBOSE) << "[TensorRT EP] shapes_min.d[" << j << "] is " << shapes_min[j];
171-         //         LOGS_DEFAULT(VERBOSE) << "[TensorRT EP] shapes_max.d[" << j << "] is " << shapes_max[j];
172-         //         LOGS_DEFAULT(VERBOSE) << "[TensorRT EP] shapes_opt.d[" << j << "] is " << shapes_opt[j];
180+         std::string message = " [TensorRT EP] shapes_min.d[" std::to_string (j) + std::string (" ] is " std::to_string (shapes_min[j]) + std::string (" \n " 
181+                               std::string (" [TensorRT EP] shapes_max.d[" std::to_string (j) + std::string (" ] is " std::to_string (shapes_max[j]) + std::string (" \n " 
182+                               std::string (" [TensorRT EP] shapes_opt.d[" std::to_string (j) + std::string (" ] is " std::to_string (shapes_opt[j]);
183+         Ort::ThrowOnError (g_ort_api->Logger_LogMessage (logger,
184+                                                        OrtLoggingLevel::ORT_LOGGING_LEVEL_VERBOSE,
185+                                                        message.c_str (), ORT_FILE, __LINE__, __FUNCTION__));
173186
174187        if  (input_explicit_shape_ranges[input_name].find (j) == input_explicit_shape_ranges[input_name].end ()) {
175188          std::vector<std::vector<int64_t >> profile_vector (trt_profiles.size ());
@@ -191,7 +204,10 @@ bool ApplyProfileShapesFromProviderOptions(std::vector<nvinfer1::IOptimizationPr
191204      dims_max.nbDims  = nb_dims;
192205      dims_opt.nbDims  = nb_dims;
193206
194-       //       LOGS_DEFAULT(VERBOSE) << "[TensorRT EP] number of dimension of this execution tensor is " << nb_dims;
207+       std::string message = " [TensorRT EP] number of dimension of this execution tensor is " std::to_string (nb_dims);
208+       Ort::ThrowOnError (g_ort_api->Logger_LogMessage (logger,
209+                                                      OrtLoggingLevel::ORT_LOGGING_LEVEL_VERBOSE,
210+                                                      message.c_str (), ORT_FILE, __LINE__, __FUNCTION__));
195211
196212      for  (int  j = 0 ; j < nb_dims; j++) {
197213        if  (dims.d [j] == -1 ) {
@@ -201,9 +217,13 @@ bool ApplyProfileShapesFromProviderOptions(std::vector<nvinfer1::IOptimizationPr
201217          dims_min.d [j] = static_cast <int32_t >(min_value);
202218          dims_max.d [j] = static_cast <int32_t >(max_value);
203219          dims_opt.d [j] = static_cast <int32_t >(opt_value);
204-           //           LOGS_DEFAULT(VERBOSE) << "[TensorRT EP] dims_min.d[" << j << "] is " << dims_min.d[j];
205-           //           LOGS_DEFAULT(VERBOSE) << "[TensorRT EP] dims_max.d[" << j << "] is " << dims_max.d[j];
206-           //           LOGS_DEFAULT(VERBOSE) << "[TensorRT EP] dims_opt.d[" << j << "] is " << dims_opt.d[j];
220+ 
221+           std::string message = " [TensorRT EP] dims_min.d[" std::to_string (j) + std::string (" ] is " std::to_string (dims_min.d [j]) + std::string (" \n " 
222+                                 std::string (" [TensorRT EP] dims_max.d[" std::to_string (j) + std::string (" ] is " std::to_string (dims_max.d [j]) + std::string (" \n " 
223+                                 std::string (" [TensorRT EP] dims_opt.d[" std::to_string (j) + std::string (" ] is " std::to_string (dims_opt.d [j]);
224+           Ort::ThrowOnError (g_ort_api->Logger_LogMessage (logger,
225+                                                          OrtLoggingLevel::ORT_LOGGING_LEVEL_VERBOSE,
226+                                                          message.c_str (), ORT_FILE, __LINE__, __FUNCTION__));
207227
208228          if  (input_explicit_shape_ranges[input_name].find (j) == input_explicit_shape_ranges[input_name].end ()) {
209229            std::vector<std::vector<int64_t >> profile_vector (trt_profiles.size ());
@@ -1178,7 +1198,7 @@ OrtStatus* TensorrtExecutionProvider::CreateNodeComputeInfoFromGraph(OrtEp* this
11781198    if  (has_explicit_profile) {
11791199      apply_explicit_profile =
11801200          ApplyProfileShapesFromProviderOptions (trt_profiles, input, profile_min_shapes_, profile_max_shapes_,
1181-                                                 profile_opt_shapes_, input_explicit_shape_ranges);
1201+                                                 profile_opt_shapes_, input_explicit_shape_ranges, &ep-> logger_ );
11821202    }
11831203
11841204    //  If no explicit optimization profile is being applied, TRT EP will later set min/max/opt shape values based on
@@ -1270,8 +1290,10 @@ OrtStatus* TensorrtExecutionProvider::CreateNodeComputeInfoFromGraph(OrtEp* this
12701290#pragma  warning(pop)
12711291#endif 
12721292      int8_enable_ = false ;
1273-       //  LOGS_DEFAULT(WARNING)
1274-       //      << "[TensorRT EP] ORT_TENSORRT_INT8_ENABLE is set, but platform doesn't support fast native int8";
1293+       std::string message = " [TensorRT EP] ORT_TENSORRT_INT8_ENABLE is set, but platform doesn't support fast native int8" 
1294+       Ort::ThrowOnError (ep->ort_api .Logger_LogMessage (&ep->logger_ ,
1295+                                                       OrtLoggingLevel::ORT_LOGGING_LEVEL_WARNING,
1296+                                                       message.c_str (), ORT_FILE, __LINE__, __FUNCTION__));
12751297    }
12761298  }
12771299
@@ -1356,9 +1378,12 @@ OrtStatus* TensorrtExecutionProvider::CreateNodeComputeInfoFromGraph(OrtEp* this
13561378#if  NV_TENSORRT_MAJOR == 8 && NV_TENSORRT_MINOR == 5
13571379  if  (build_heuristics_enable_) {
13581380    trt_config->setFlag (nvinfer1::BuilderFlag::kENABLE_TACTIC_HEURISTIC );
1359-     LOGS_DEFAULT (WARNING) << " [TensorRT EP] Builder heuristics are enabled." 
1360-                           << "  For TRT > 8.5, trt_build_heuristics_enable is deprecated, please set builder " 
1361-                              " optimization level as 2 to enable builder heuristics." 
1381+     std::string message = " [TensorRT EP] Builder heuristics are enabled." 
1382+                           std::string ("  For TRT > 8.5, trt_build_heuristics_enable is deprecated, please set builder " 
1383+                           std::string (" optimization level as 2 to enable builder heuristics." 
1384+     Ort::ThrowOnError (ep->ort_api .Logger_LogMessage (&ep->logger_ ,
1385+                                                     OrtLoggingLevel::ORT_LOGGING_LEVEL_WARNING,
1386+                                                     message.c_str (), ORT_FILE, __LINE__, __FUNCTION__));
13621387  }
13631388#elif  NV_TENSORRT_MAJOR == 8 && NV_TENSORRT_MINOR > 5 || NV_TENSORRT_MAJOR > 8
13641389  //  for TRT 8.6 onwards, heuristic-based tactic option is automatically enabled by setting builder optimization level 2
@@ -1399,10 +1424,16 @@ OrtStatus* TensorrtExecutionProvider::CreateNodeComputeInfoFromGraph(OrtEp* this
13991424  }
14001425#else 
14011426  if  (builder_optimization_level_ != 3 ) {
1402-     LOGS_DEFAULT (WARNING) << " [TensorRT EP] Builder optimization level can only be used on TRT 8.6 onwards!" 
1427+     std::string message = " [TensorRT EP] Builder optimization level can only be used on TRT 8.6 onwards!" 
1428+     Ort::ThrowOnError (ep->ort_api .Logger_LogMessage (&ep->logger_ ,
1429+                                                     OrtLoggingLevel::ORT_LOGGING_LEVEL_WARNING,
1430+                                                     message.c_str (), ORT_FILE, __LINE__, __FUNCTION__));
14031431  }
14041432  if  (auxiliary_streams_ >= 0 ) {
1405-     LOGS_DEFAULT (WARNING) << " [TensorRT EP] Auxiliary streams can only be set on TRT 8.6 onwards!" 
1433+     std::string message = " [TensorRT EP] Auxiliary streams can only be set on TRT 8.6 onwards!" 
1434+     Ort::ThrowOnError (ep->ort_api .Logger_LogMessage (&ep->logger_ ,
1435+                                                     OrtLoggingLevel::ORT_LOGGING_LEVEL_WARNING,
1436+                                                     message.c_str (), ORT_FILE, __LINE__, __FUNCTION__));
14061437  }
14071438#endif 
14081439
@@ -1419,7 +1450,10 @@ OrtStatus* TensorrtExecutionProvider::CreateNodeComputeInfoFromGraph(OrtEp* this
14191450                                                    OrtLoggingLevel::ORT_LOGGING_LEVEL_VERBOSE,
14201451                                                    message.c_str (), ORT_FILE, __LINE__, __FUNCTION__));
14211452#else 
1422-     LOGS_DEFAULT (WARNING) << " [TensorRT EP] weight-stripped engines can only be used on TRT 10.0 onwards!" 
1453+     std::string message = " [TensorRT EP] weight-stripped engines can only be used on TRT 10.0 onwards!" 
1454+     Ort::ThrowOnError (ep->ort_api .Logger_LogMessage (&ep->logger_ ,
1455+                                                     OrtLoggingLevel::ORT_LOGGING_LEVEL_WARNING,
1456+                                                     message.c_str (), ORT_FILE, __LINE__, __FUNCTION__));
14231457#endif 
14241458  }
14251459
@@ -1613,10 +1647,11 @@ OrtStatus* TensorrtExecutionProvider::CreateNodeComputeInfoFromGraph(OrtEp* this
16131647        }
16141648        if  (detailed_build_log_) {
16151649          auto  engine_build_stop = std::chrono::steady_clock::now ();
1616-           //  LOGS_DEFAULT(INFO)
1617-           //      << "TensorRT engine build for " << trt_node_name_with_precision << " took: "
1618-           //      << std::chrono::duration_cast<std::chrono::milliseconds>(engine_build_stop - engine_build_start).count()
1619-           //      << "ms" << std::endl;
1650+           std::string message = " TensorRT engine build for " std::string ("  took: " 
1651+                                 std::to_string (std::chrono::duration_cast<std::chrono::milliseconds>(engine_build_stop - engine_build_start).count ()) + std::string (" ms" 
1652+           Ort::ThrowOnError (ep->ort_api .Logger_LogMessage (&ep->logger_ ,
1653+                                                           OrtLoggingLevel::ORT_LOGGING_LEVEL_INFO,
1654+                                                           message.c_str (), ORT_FILE, __LINE__, __FUNCTION__));
16201655        }
16211656        if  (engine_cache_enable_) {
16221657          //  Serialize engine profile if it has explicit profiles
@@ -1642,8 +1677,10 @@ OrtStatus* TensorrtExecutionProvider::CreateNodeComputeInfoFromGraph(OrtEp* this
16421677                                                              OrtLoggingLevel::ORT_LOGGING_LEVEL_VERBOSE,
16431678                                                              message.c_str (), ORT_FILE, __LINE__, __FUNCTION__));
16441679            } else  {
1645-               //  LOGS_DEFAULT(WARNING)
1646-               //      << "[TensorRT EP] Engine cache encryption function is not found. No cache is written to disk";
1680+               std::string message = " [TensorRT EP] Engine cache encryption function is not found. No cache is written to disk" 
1681+               Ort::ThrowOnError (ep->ort_api .Logger_LogMessage (&ep->logger_ ,
1682+                                                               OrtLoggingLevel::ORT_LOGGING_LEVEL_WARNING,
1683+                                                               message.c_str (), ORT_FILE, __LINE__, __FUNCTION__));
16471684            }
16481685          } else  {
16491686            std::ofstream file (engine_cache_path, std::ios::binary | std::ios::out);
@@ -3013,8 +3050,10 @@ OrtStatus* TRTEpNodeComputeInfo::ComputeImpl(OrtNodeComputeInfo* this_ptr, void*
30133050                                                         OrtLoggingLevel::ORT_LOGGING_LEVEL_VERBOSE,
30143051                                                         message.c_str (), ORT_FILE, __LINE__, __FUNCTION__));
30153052        } else  {
3016-           //  LOGS_DEFAULT(WARNING)
3017-           //  << "[TensorRT EP] Engine cache encryption function is not found. No cache is written to disk";
3053+           std::string message = " [TensorRT EP] Engine cache encryption function is not found. No cache is written to disk" 
3054+           Ort::ThrowOnError (ep.ort_api .Logger_LogMessage (&ep.logger_ ,
3055+                                                           OrtLoggingLevel::ORT_LOGGING_LEVEL_WARNING,
3056+                                                           message.c_str (), ORT_FILE, __LINE__, __FUNCTION__));
30183057        }
30193058      } else  {
30203059        std::ofstream file (engine_cache_path, std::ios::binary | std::ios::out);
0 commit comments