|
| 1 | +""" |
| 2 | +YOLOv11 LoadGen MLPerf |
| 3 | +""" |
| 4 | + |
| 5 | +import argparse |
| 6 | +import array |
| 7 | +import json |
| 8 | +import logging |
| 9 | +import os |
| 10 | +import sys |
| 11 | +import time |
| 12 | +from pathlib import Path |
| 13 | + |
| 14 | +import numpy as np |
| 15 | +import mlperf_loadgen as lg |
| 16 | +from ultralytics import YOLO |
| 17 | + |
| 18 | + |
| 19 | +# COCO Dataset handler for YOLO |
| 20 | +class Coco: |
| 21 | + def __init__(self, data_path, count=None): |
| 22 | + self.image_list = [] |
| 23 | + self.image_ids = [] |
| 24 | + self.data_path = data_path |
| 25 | + |
| 26 | + # load from annotations |
| 27 | + annotations_file = Path(data_path).parent.parent / "annotations" / "instances_val2017.json" |
| 28 | + if not annotations_file.exists(): |
| 29 | + annotations_file = Path(data_path).parent.parent / "annotations" / "image_info_test-dev2017.json" |
| 30 | + |
| 31 | + if annotations_file.exists(): |
| 32 | + with open(annotations_file, 'r') as f: |
| 33 | + coco = json.load(f) |
| 34 | + for img_info in coco['images']: |
| 35 | + img_path = os.path.join(data_path, img_info['file_name']) |
| 36 | + if os.path.exists(img_path): |
| 37 | + self.image_list.append(img_path) |
| 38 | + self.image_ids.append(img_info['id']) |
| 39 | + else: |
| 40 | + # load from directory |
| 41 | + for img_path in sorted(Path(data_path).glob("*.jpg")): |
| 42 | + self.image_list.append(str(img_path)) |
| 43 | + self.image_ids.append(int(img_path.stem)) |
| 44 | + |
| 45 | + self.count = len(self.image_list) if count is None else min(count, len(self.image_list)) |
| 46 | + print(f"Loaded {self.count} images") |
| 47 | + |
| 48 | + def get_item_count(self): |
| 49 | + return self.count |
| 50 | + |
| 51 | + def get_item_loc(self, idx): |
| 52 | + return self.image_list[idx], self.image_ids[idx] |
| 53 | + |
| 54 | + |
| 55 | +# post process COCO - convert YOLO outputs to COCO format |
| 56 | +class PostProcessCoco: |
| 57 | + def __init__(self): |
| 58 | + self.results = [] |
| 59 | + |
| 60 | + def start(self): |
| 61 | + self.results = [] |
| 62 | + |
| 63 | + def add_results(self, results): |
| 64 | + self.results.extend(results) |
| 65 | + |
| 66 | + def finalize(self, output_dir): |
| 67 | + if output_dir: |
| 68 | + output_file = os.path.join(output_dir, "predictions.json") |
| 69 | + with open(output_file, 'w') as f: |
| 70 | + json.dump(self.results, f) |
| 71 | + print(f"saved {len(self.results)} predictions to {output_file}") |
| 72 | + |
| 73 | + |
| 74 | +# YOLO inference engine backend |
| 75 | +class BackendYOLO: |
| 76 | + def __init__(self, model_path, device="cuda:0"): |
| 77 | + print(f"loading model: {model_path}") |
| 78 | + self.model = YOLO(model_path) |
| 79 | + self.model.to(device) |
| 80 | + print("model has been loaded") |
| 81 | + |
| 82 | + def predict(self, img_path): |
| 83 | + results = self.model.predict( |
| 84 | + img_path, |
| 85 | + conf=0.001, |
| 86 | + iou=0.6, |
| 87 | + max_det=300, |
| 88 | + imgsz=640, |
| 89 | + verbose=False |
| 90 | + ) |
| 91 | + return results[0] |
| 92 | + |
| 93 | + |
| 94 | +# runner for orchestration, dataset, model and LoadGen - based on inference/vision/classification_and_detection/python/main.py |
| 95 | +class Runner: |
| 96 | + def __init__(self, model, ds, post_proc): |
| 97 | + self.model = model |
| 98 | + self.ds = ds |
| 99 | + self.post_proc = post_proc |
| 100 | + self.take_accuracy = False |
| 101 | + |
| 102 | + def start_run(self, take_accuracy): |
| 103 | + self.take_accuracy = take_accuracy |
| 104 | + self.post_proc.start() |
| 105 | + |
| 106 | + # convert YOLO result to COCO format |
| 107 | + def convert_to_coco(self, result, image_id): |
| 108 | + detections = [] |
| 109 | + |
| 110 | + if len(result.boxes) == 0: |
| 111 | + return detections |
| 112 | + |
| 113 | + boxes = result.boxes.xyxy.cpu().numpy() |
| 114 | + scores = result.boxes.conf.cpu().numpy() |
| 115 | + classes = result.boxes.cls.cpu().numpy() |
| 116 | + |
| 117 | + for box, score, cls in zip(boxes, scores, classes): |
| 118 | + x1, y1, x2, y2 = box |
| 119 | + detection = { |
| 120 | + "image_id": int(image_id), |
| 121 | + "category_id": int(cls) + 1, # COCO is 1-indexed |
| 122 | + "bbox": [float(x1), float(y1), float(x2 - x1), float(y2 - y1)], |
| 123 | + "score": float(score) |
| 124 | + } |
| 125 | + detections.append(detection) |
| 126 | + |
| 127 | + return detections |
| 128 | + |
| 129 | + # to process the query samples |
| 130 | + def enqueue(self, query_samples): |
| 131 | + for qitem in query_samples: |
| 132 | + img_path, img_id = self.ds.get_item_loc(qitem.index) |
| 133 | + |
| 134 | + # run inference |
| 135 | + result = self.model.predict(img_path) |
| 136 | + |
| 137 | + # convert to COCO format |
| 138 | + detections = self.convert_to_coco(result, img_id) |
| 139 | + |
| 140 | + # store for accuracy |
| 141 | + if self.take_accuracy: |
| 142 | + self.post_proc.add_results(detections) |
| 143 | + |
| 144 | + # prepare response for LoadGen |
| 145 | + response_data = json.dumps(detections).encode('utf-8') |
| 146 | + response_array = array.array('B', response_data) |
| 147 | + bi = response_array.buffer_info() |
| 148 | + |
| 149 | + response = lg.QuerySampleResponse(qitem.id, bi[0], bi[1]) |
| 150 | + lg.QuerySamplesComplete([response]) |
| 151 | + |
| 152 | + |
| 153 | +# QSL/SUT LoadGen |
| 154 | +class QueueRunner: |
| 155 | + def __init__(self, runner): |
| 156 | + self.runner = runner |
| 157 | + self.qsl = None |
| 158 | + self.sut = None |
| 159 | + |
| 160 | + def load_query_samples(self, sample_list): |
| 161 | + pass |
| 162 | + |
| 163 | + def unload_query_samples(self, sample_list): |
| 164 | + pass |
| 165 | + |
| 166 | + def issue_queries(self, query_samples): |
| 167 | + self.runner.enqueue(query_samples) |
| 168 | + |
| 169 | + def flush_queries(self): |
| 170 | + pass |
| 171 | + |
| 172 | +# creaet SUT |
| 173 | +def get_sut(ds, runner): |
| 174 | + queue_runner = QueueRunner(runner) |
| 175 | + |
| 176 | + qsl = lg.ConstructQSL( |
| 177 | + ds.get_item_count(), |
| 178 | + ds.get_item_count(), |
| 179 | + queue_runner.load_query_samples, |
| 180 | + queue_runner.unload_query_samples |
| 181 | + ) |
| 182 | + queue_runner.qsl = qsl |
| 183 | + |
| 184 | + sut = lg.ConstructSUT( |
| 185 | + queue_runner.issue_queries, |
| 186 | + queue_runner.flush_queries |
| 187 | + ) |
| 188 | + queue_runner.sut = sut |
| 189 | + |
| 190 | + |
| 191 | + return qsl, sut, queue_runner |
| 192 | + |
| 193 | + |
| 194 | +def main(): |
| 195 | + parser = argparse.ArgumentParser() |
| 196 | + parser.add_argument("--dataset-path", required=True, help="path to dataset images") |
| 197 | + parser.add_argument("--model", required=True, help="path to YOLO model") |
| 198 | + parser.add_argument("--device", default="cuda:0", help="device") |
| 199 | + parser.add_argument("--scenario", default="Offline", choices=["Offline", "SingleStream", "MultiStream"]) |
| 200 | + parser.add_argument("--accuracy", action="store_true", help="run accuracy mode") |
| 201 | + parser.add_argument("--count", type=int, help="number of samples") |
| 202 | + parser.add_argument("--output", default="output", help="output directory") |
| 203 | + args = parser.parse_args() |
| 204 | + |
| 205 | + print("=" * 60) |
| 206 | + print("YOLOv11 MLC LoadGen POC") |
| 207 | + print("=" * 60) |
| 208 | + |
| 209 | + os.makedirs(args.output, exist_ok=True) |
| 210 | + |
| 211 | + # load dataset |
| 212 | + ds = Coco(args.dataset_path, count=args.count) |
| 213 | + |
| 214 | + # load model |
| 215 | + backend = BackendYOLO(args.model, device=args.device) |
| 216 | + |
| 217 | + # create post-processor and runner |
| 218 | + post_proc = PostProcessCoco() |
| 219 | + runner = Runner(backend, ds, post_proc) |
| 220 | + |
| 221 | + # create QSL and SUT |
| 222 | + qsl, sut, queue_runner = get_sut(ds, runner) |
| 223 | + |
| 224 | + # configure LoadGen |
| 225 | + settings = lg.TestSettings() |
| 226 | + settings.scenario = getattr(lg.TestScenario, args.scenario) |
| 227 | + settings.mode = lg.TestMode.AccuracyOnly if args.accuracy else lg.TestMode.PerformanceOnly |
| 228 | + |
| 229 | + if args.scenario == "Offline": |
| 230 | + settings.offline_expected_qps = 100 |
| 231 | + elif args.scenario == "SingleStream": |
| 232 | + settings.single_stream_expected_latency_ns = 10000000 # 10ms |
| 233 | + elif args.scenario == "MultiStream": |
| 234 | + settings.multi_stream_samples_per_query = 8 |
| 235 | + settings.multi_stream_target_latency_ns = 50000000 # 50ms |
| 236 | + |
| 237 | + settings.min_duration_ms = 60000 |
| 238 | + settings.min_query_count = 100 |
| 239 | + |
| 240 | + # logging - come back to this |
| 241 | + log_settings = lg.LogSettings() |
| 242 | + log_settings.log_output.outdir = args.output |
| 243 | + log_settings.log_output.copy_summary_to_stdout = True |
| 244 | + log_settings.enable_trace = False |
| 245 | + |
| 246 | + # run |
| 247 | + print(f"\nRunning {args.scenario} scenario...") |
| 248 | + print("-" * 60) |
| 249 | + |
| 250 | + runner.start_run(args.accuracy) |
| 251 | + |
| 252 | + start = time.time() |
| 253 | + lg.StartTestWithLogSettings(sut, qsl, settings, log_settings) |
| 254 | + elapsed = time.time() - start |
| 255 | + |
| 256 | + print("-" * 60) |
| 257 | + print(f"Completed in {elapsed:.2f}s\n") |
| 258 | + |
| 259 | + # save results |
| 260 | + if args.accuracy: |
| 261 | + post_proc.finalize(args.output) |
| 262 | + |
| 263 | + print("=" * 60) |
| 264 | + print(f"Results: {args.output}") |
| 265 | + print("=" * 60) |
| 266 | + |
| 267 | + # destroy qsl and sut cleanup |
| 268 | + lg.DestroyQSL(qsl) |
| 269 | + lg.DestroySUT(sut) |
| 270 | + |
| 271 | + |
| 272 | +if __name__ == "__main__": |
| 273 | + main() |
| 274 | + |
0 commit comments