Skip to content

neuralsorcerer/minitensor

Repository files navigation

MiniTensor Logo

A lightweight, high-performance tensor operations library with automatic differentiation, inspired by PyTorch and powered by Rust engine.


Current Release Python 3.10+ rustc 1.85+ Test Linux Test Windows Test MacOS Lints License DOI

Highlights

  • High Performance: Rust engine for maximum speed and memory efficiency
  • Python-Friendly: Familiar PyTorch-like API for easy adoption
  • Neural Networks: Complete neural network layers and optimizers
  • NumPy Integration: Seamless interoperability with NumPy arrays
  • Automatic Differentiation: Built-in gradient computation for training
  • Extensible: Modular design for easy customization and extension

Quick Start

Installation

From PyPi:

pip install minitensor

From Source:

# Clone the repository
git clone https://github.com/neuralsorcerer/minitensor.git
cd minitensor

# Quick install with make (Linux/macOS)
make install

# Or manually with maturin
pip install maturin[patchelf]
maturin develop --release

# Optional: editable install with pip (debug build by default)
pip install -e .

Note: pip install -e . builds a debug version by default; pass --config-settings=--release for a release build.

Using the install script (Linux/macOS/Windows):

bash install.sh

Common options:

bash install.sh --no-venv          # Use current Python env (no virtualenv)
bash install.sh --venv .myvenv     # Create/use a specific venv directory
bash install.sh --debug            # Debug build (default is --release)
bash install.sh --python /usr/bin/python3.12   # Use a specific Python

The script ensures Python 3.10+, sets up a virtual environment by default, installs Rust (via rustup if needed), installs maturin (with patchelf on Linux), builds MiniTensor, and verifies the installation.

Basic Usage

import minitensor as mt
from minitensor import nn, optim

# Create tensors
x = mt.randn(32, 784)  # Batch of 32 samples
y = mt.zeros(32, 10)   # Target labels

# Build a neural network
model = nn.Sequential([
    nn.DenseLayer(784, 128),
    nn.ReLU(),
    nn.DenseLayer(128, 10)
])

# Set up training
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(0.001, betas=(0.9, 0.999), epsilon=1e-8)

print(f"Model: {model}")
print(f"Input shape: {x.shape}")

Documentation

Core Components

Tensors

import minitensor as mt
import numpy as np

# Create tensors
x = mt.zeros(3, 4)          # Zeros
y = mt.ones(3, 4)           # Ones
z = mt.randn(2, 2)          # Random normal
np_array = np.array([[1, 2, 3], [4, 5, 6]], dtype=np.float32)
w = mt.from_numpy(np_array) # From NumPy

# Operations
result = x + y                      # Element-wise addition
product = x.matmul(y.T)             # Matrix multiplication
mean_val = x.mean()                 # Reduction operations
max_val = x.max()                   # -inf for empty or all-NaN tensors
min_vals, min_idx = x.min(dim=1)    # Returns values & indices; empty dims yield (inf, 0)

Neural Networks

from minitensor import nn

# Layers
dense = nn.DenseLayer(10, 5)        # Dense layer (fully connected)
conv = nn.Conv2d(3, 16, 3)          # 2D convolution
bn = nn.BatchNorm1d(128)            # Batch normalization
dropout = nn.Dropout(0.5)           # Dropout regularization

# Activations
relu = nn.ReLU()                    # ReLU activation
sigmoid = nn.Sigmoid()              # Sigmoid activation
tanh = nn.Tanh()                    # Tanh activation
gelu = nn.GELU()                    # GELU activation

# Loss functions
mse = nn.MSELoss()                  # Mean squared error
ce = nn.CrossEntropyLoss()          # Cross entropy
bce = nn.BCELoss()                  # Binary cross entropy

Optimizers

from minitensor import optim

# Optimizers
sgd = optim.SGD(0.01, 0.9, 0.0, False)                      # SGD with momentum
adam = optim.Adam(0.001, betas=(0.9, 0.999), epsilon=1e-8)  # Adam optimizer
rmsprop = optim.RMSprop(0.01, 0.99, 1e-8, 0.0, 0.0)         # RMSprop optimizer

Architecture

Minitensor is built with a modular architecture:

┌─────────────────┐    ┌──────────────────┐    ┌─────────────────┐
│   Python API    │    │   PyO3 Bindings  │    │   Rust Engine   │
│                 │<-->│                  │<-->│                 │
│ • Tensor        │    │ • Type Safety    │    │ • Performance   │
│ • nn.Module     │    │ • Memory Mgmt    │    │ • Autograd      │
│ • Optimizers    │    │ • Error Handling │    │ • SIMD/GPU      │
└─────────────────┘    └──────────────────┘    └─────────────────┘

Components

  • Engine: High-performance Rust backend with SIMD optimizations
  • Bindings: PyO3-based Python bindings for seamless interop
  • Python API: Familiar PyTorch-like interface for ease of use

Examples

Simple Neural Network

import minitensor as mt
from minitensor import nn, optim

# Create a simple classifier
model = nn.Sequential([
    nn.DenseLayer(784, 128),
    nn.ReLU(),
    nn.DenseLayer(128, 10),
])

# Initialize model
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(0.001, betas=(0.9, 0.999), epsilon=1e-8)

Training Loop

import minitensor as mt
from minitensor import nn, optim

# Synthetic data: y = 3x + 0.5
x = mt.randn(64, 1)
y = 3 * x + 0.5

# Model, loss, optimizer
model = nn.DenseLayer(1, 1)
criterion = nn.MSELoss()
optimizer = optim.SGD(model.parameters(), lr=0.1)

for epoch in range(100):
    pred = model(x)
    loss = criterion(pred, y)
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()
    if (epoch + 1) % 20 == 0:
        loss_val = float(loss.numpy().ravel()[0])
        print(f"Epoch {epoch+1:03d} | Loss: {loss_val:.4f}")

Development & Testing

The Python package is a thin wrapper around the compiled Rust engine. Whenever you make changes under engine/ or bindings/, rebuild the extension so the Python layer talks to the latest native implementation before running tests:

# 1. Build the extension in editable mode (release profile)
pip install -e . --config-settings=--release

# 2. Run the Rust unit and integration tests
cargo test

# 3. Execute the Python test
pytest

Running pip install -e . refreshes the minitensor._core module. Skipping this step leaves Python bound to an older shared library, which can surface as missing attributes or stale logic when validating changes locally.

Code Style

  • Rust: Follow rustfmt and clippy recommendations
  • Python: Use black and isort for formatting

Performance

Minitensor is designed for performance:

  • Memory Efficient: Zero-copy operations where possible
  • SIMD Optimized: Vectorized operations for maximum throughput
  • GPU Ready: CUDA and Metal backend support (coming soon)
  • Parallel: Multi-threaded operations for large tensors

Citation

If you use minitensor in your work and wish to refer to it, please use the following BibTeX entry.

@software{minitensor,
  author = {Soumyadip Sarkar},
  title = {MiniTensor: A Lightweight, High-Performance Tensor Operations Library},
  url = {https://doi.org/10.5281/zenodo.17384736},
  year = {2025},
}

License

This project is licensed under the Apache License - see the LICENSE file for details.

Acknowledgments

About

A Lightweight, High-Performance Tensor Operations Library.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages