|
| 1 | +// Experimental: This package is EXPERIMENTAL and may change or be removed at any time |
| 2 | + |
| 3 | +package tdf |
| 4 | + |
| 5 | +import ( |
| 6 | + "encoding/json" |
| 7 | + "errors" |
| 8 | + "fmt" |
| 9 | + |
| 10 | + "github.com/gowebpki/jcs" |
| 11 | + "github.com/lestrrat-go/jwx/v2/jwa" |
| 12 | + "github.com/lestrrat-go/jwx/v2/jwt" |
| 13 | + "github.com/opentdf/platform/lib/ocrypto" |
| 14 | +) |
| 15 | + |
| 16 | +const ( |
| 17 | + // SystemMetadataAssertionID is the standard ID for system metadata assertions |
| 18 | + SystemMetadataAssertionID = "system-metadata" |
| 19 | + // SystemMetadataSchemaV1 defines the schema version for system metadata |
| 20 | + SystemMetadataSchemaV1 = "system-metadata-v1" |
| 21 | + // kAssertionSignature is the JWT claim key for assertion signatures |
| 22 | + kAssertionSignature = "assertionSig" |
| 23 | + // kAssertionHash is the JWT claim key for assertion hashes |
| 24 | + kAssertionHash = "assertionHash" |
| 25 | +) |
| 26 | + |
| 27 | +// AssertionConfig defines an assertion to be included in the TDF during creation. |
| 28 | +// |
| 29 | +// AssertionConfig extends Assertion with a signing key, enabling creation |
| 30 | +// of cryptographically signed assertions. The signing key is used during |
| 31 | +// TDF creation but is not stored in the final TDF. |
| 32 | +// |
| 33 | +// Required fields: |
| 34 | +// - ID: Unique identifier for the assertion |
| 35 | +// - Type: The kind of assertion (BaseAssertion, HandlingAssertion) |
| 36 | +// - Scope: What the assertion applies to (PayloadScope, TrustedDataObjScope) |
| 37 | +// - AppliesToState: When the assertion is relevant (Encrypted, Unencrypted) |
| 38 | +// - Statement: The assertion content and metadata |
| 39 | +// |
| 40 | +// Optional fields: |
| 41 | +// - SigningKey: Custom signing key (defaults to DEK with HS256) |
| 42 | +// |
| 43 | +// Example: |
| 44 | +// |
| 45 | +// assertion := AssertionConfig{ |
| 46 | +// ID: "retention-policy", |
| 47 | +// Type: HandlingAssertion, |
| 48 | +// Scope: PayloadScope, |
| 49 | +// AppliesToState: Unencrypted, |
| 50 | +// Statement: Statement{ |
| 51 | +// Format: "json", |
| 52 | +// Schema: "retention-v1", |
| 53 | +// Value: `{"retain_days": 90, "auto_delete": true}`, |
| 54 | +// }, |
| 55 | +// } |
| 56 | +type AssertionConfig struct { |
| 57 | + ID string `validate:"required"` |
| 58 | + Type AssertionType `validate:"required"` |
| 59 | + Scope Scope `validate:"required"` |
| 60 | + AppliesToState AppliesToState `validate:"required"` |
| 61 | + Statement Statement |
| 62 | + SigningKey AssertionKey |
| 63 | +} |
| 64 | + |
| 65 | +// Assertion represents a cryptographically signed assertion in the TDF manifest. |
| 66 | +// |
| 67 | +// Assertions provide integrity verification and handling instructions that are |
| 68 | +// cryptographically bound to the TDF. They cannot be modified or copied to |
| 69 | +// another TDF without detection due to the cryptographic binding. |
| 70 | +// |
| 71 | +// The assertion structure includes: |
| 72 | +// - Metadata: ID, type, scope, and state applicability |
| 73 | +// - Statement: The actual assertion content in structured format |
| 74 | +// - Binding: Cryptographic signature ensuring integrity |
| 75 | +// |
| 76 | +// Assertions are verified during TDF reading to ensure they haven't been |
| 77 | +// tampered with since TDF creation. |
| 78 | +type Assertion struct { |
| 79 | + ID string `json:"id"` |
| 80 | + Type AssertionType `json:"type"` |
| 81 | + Scope Scope `json:"scope"` |
| 82 | + AppliesToState AppliesToState `json:"appliesToState,omitempty"` |
| 83 | + Statement Statement `json:"statement"` |
| 84 | + Binding Binding `json:"binding,omitempty"` |
| 85 | +} |
| 86 | + |
| 87 | +var errAssertionVerifyKeyFailure = errors.New("assertion: failed to verify with provided key") |
| 88 | + |
| 89 | +// Sign signs the assertion with the given hash and signature using the key. |
| 90 | +// It returns an error if the signing fails. |
| 91 | +// The assertion binding is updated with the method and the signature. |
| 92 | +func (a *Assertion) Sign(hash, sig string, key AssertionKey) error { |
| 93 | + tok := jwt.New() |
| 94 | + if err := tok.Set(kAssertionHash, hash); err != nil { |
| 95 | + return fmt.Errorf("failed to set assertion hash: %w", err) |
| 96 | + } |
| 97 | + if err := tok.Set(kAssertionSignature, sig); err != nil { |
| 98 | + return fmt.Errorf("failed to set assertion signature: %w", err) |
| 99 | + } |
| 100 | + |
| 101 | + // sign the hash and signature |
| 102 | + signedTok, err := jwt.Sign(tok, jwt.WithKey(jwa.KeyAlgorithmFrom(key.Alg.String()), key.Key)) |
| 103 | + if err != nil { |
| 104 | + return fmt.Errorf("signing assertion failed: %w", err) |
| 105 | + } |
| 106 | + |
| 107 | + // set the binding |
| 108 | + a.Binding.Method = JWS.String() |
| 109 | + a.Binding.Signature = string(signedTok) |
| 110 | + |
| 111 | + return nil |
| 112 | +} |
| 113 | + |
| 114 | +// Verify checks the binding signature of the assertion and |
| 115 | +// returns the hash and the signature. It returns an error if the verification fails. |
| 116 | +func (a Assertion) Verify(key AssertionKey) (string, string, error) { |
| 117 | + tok, err := jwt.Parse([]byte(a.Binding.Signature), |
| 118 | + jwt.WithKey(jwa.KeyAlgorithmFrom(key.Alg.String()), key.Key), |
| 119 | + ) |
| 120 | + if err != nil { |
| 121 | + return "", "", fmt.Errorf("%w: %w", errAssertionVerifyKeyFailure, err) |
| 122 | + } |
| 123 | + hashClaim, found := tok.Get(kAssertionHash) |
| 124 | + if !found { |
| 125 | + return "", "", errors.New("hash claim not found") |
| 126 | + } |
| 127 | + hash, ok := hashClaim.(string) |
| 128 | + if !ok { |
| 129 | + return "", "", errors.New("hash claim is not a string") |
| 130 | + } |
| 131 | + |
| 132 | + sigClaim, found := tok.Get(kAssertionSignature) |
| 133 | + if !found { |
| 134 | + return "", "", errors.New("signature claim not found") |
| 135 | + } |
| 136 | + sig, ok := sigClaim.(string) |
| 137 | + if !ok { |
| 138 | + return "", "", errors.New("signature claim is not a string") |
| 139 | + } |
| 140 | + return hash, sig, nil |
| 141 | +} |
| 142 | + |
| 143 | +// GetHash returns the hash of the assertion in hex format. |
| 144 | +func (a Assertion) GetHash() ([]byte, error) { |
| 145 | + // Clear out the binding |
| 146 | + a.Binding = Binding{} |
| 147 | + |
| 148 | + // Marshal the assertion to JSON |
| 149 | + assertionJSON, err := json.Marshal(a) |
| 150 | + if err != nil { |
| 151 | + return nil, fmt.Errorf("json.Marshal failed: %w", err) |
| 152 | + } |
| 153 | + |
| 154 | + // Unmarshal the JSON into a map to manipulate it |
| 155 | + var jsonObject map[string]interface{} |
| 156 | + if err := json.Unmarshal(assertionJSON, &jsonObject); err != nil { |
| 157 | + return nil, fmt.Errorf("json.Unmarshal failed: %w", err) |
| 158 | + } |
| 159 | + |
| 160 | + // Remove the binding key |
| 161 | + delete(jsonObject, "binding") |
| 162 | + |
| 163 | + // Marshal the map back to JSON |
| 164 | + assertionJSON, err = json.Marshal(jsonObject) |
| 165 | + if err != nil { |
| 166 | + return nil, fmt.Errorf("json.Marshal failed: %w", err) |
| 167 | + } |
| 168 | + |
| 169 | + // Transform the JSON using JCS |
| 170 | + transformedJSON, err := jcs.Transform(assertionJSON) |
| 171 | + if err != nil { |
| 172 | + return nil, fmt.Errorf("jcs.Transform failed: %w", err) |
| 173 | + } |
| 174 | + |
| 175 | + return ocrypto.SHA256AsHex(transformedJSON), nil |
| 176 | +} |
| 177 | + |
| 178 | +func (s *Statement) UnmarshalJSON(data []byte) error { |
| 179 | + // Define a custom struct for deserialization |
| 180 | + type Alias Statement |
| 181 | + aux := &struct { |
| 182 | + Value json.RawMessage `json:"value,omitempty"` |
| 183 | + *Alias |
| 184 | + }{ |
| 185 | + Alias: (*Alias)(s), |
| 186 | + } |
| 187 | + |
| 188 | + if err := json.Unmarshal(data, &aux); err != nil { |
| 189 | + return err |
| 190 | + } |
| 191 | + |
| 192 | + // Attempt to decode Value as an object |
| 193 | + var temp map[string]interface{} |
| 194 | + if json.Unmarshal(aux.Value, &temp) == nil { |
| 195 | + // Re-encode the object as a string and assign to Value |
| 196 | + objAsString, err := json.Marshal(temp) |
| 197 | + if err != nil { |
| 198 | + return err |
| 199 | + } |
| 200 | + s.Value = string(objAsString) |
| 201 | + } else { |
| 202 | + // Assign raw string to Value |
| 203 | + var str string |
| 204 | + if err := json.Unmarshal(aux.Value, &str); err != nil { |
| 205 | + return fmt.Errorf("value is neither a valid JSON object nor a string: %s", string(aux.Value)) |
| 206 | + } |
| 207 | + s.Value = str |
| 208 | + } |
| 209 | + |
| 210 | + return nil |
| 211 | +} |
| 212 | + |
| 213 | +// Statement includes information applying to the scope of the assertion. |
| 214 | +// It could contain rights, handling instructions, or general metadata. |
| 215 | +type Statement struct { |
| 216 | + // Format describes the payload encoding format. (e.g. json) |
| 217 | + Format string `json:"format,omitempty" validate:"required"` |
| 218 | + // Schema describes the schema of the payload. (e.g. tdf) |
| 219 | + Schema string `json:"schema,omitempty" validate:"required"` |
| 220 | + // Value is the payload of the assertion. |
| 221 | + Value string `json:"value,omitempty" validate:"required"` |
| 222 | +} |
| 223 | + |
| 224 | +// Binding enforces cryptographic integrity of the assertion. |
| 225 | +// So the can't be modified or copied to another tdf. |
| 226 | +type Binding struct { |
| 227 | + // Method used to bind the assertion. (e.g. jws) |
| 228 | + Method string `json:"method,omitempty"` |
| 229 | + // Signature of the assertion. |
| 230 | + Signature string `json:"signature,omitempty"` |
| 231 | +} |
| 232 | + |
| 233 | +// AssertionType represents the category of assertion being made. |
| 234 | +// |
| 235 | +// Different assertion types serve different purposes in TDF handling: |
| 236 | +// - HandlingAssertion: Instructions for data processing, retention, deletion |
| 237 | +// - BaseAssertion: General-purpose assertions including metadata, audit info |
| 238 | +type AssertionType string |
| 239 | + |
| 240 | +const ( |
| 241 | + // HandlingAssertion provides instructions for data handling and processing. |
| 242 | + // Examples: retention policies, deletion schedules, processing requirements |
| 243 | + HandlingAssertion AssertionType = "handling" |
| 244 | + // BaseAssertion is a general-purpose assertion type for metadata and other content. |
| 245 | + // Examples: audit information, system metadata, custom business logic |
| 246 | + BaseAssertion AssertionType = "other" |
| 247 | +) |
| 248 | + |
| 249 | +// String returns the string representation of the assertion type. |
| 250 | +func (at AssertionType) String() string { |
| 251 | + return string(at) |
| 252 | +} |
| 253 | + |
| 254 | +// Scope defines what component of the TDF the assertion applies to. |
| 255 | +// |
| 256 | +// Scope determines which part of the TDF structure the assertion governs: |
| 257 | +// - TrustedDataObjScope: Assertion applies to the entire TDF object |
| 258 | +// - PayloadScope: Assertion applies only to the encrypted payload data |
| 259 | +type Scope string |
| 260 | + |
| 261 | +const ( |
| 262 | + // TrustedDataObjScope indicates the assertion applies to the complete TDF object. |
| 263 | + // This includes manifest, key access objects, and payload. |
| 264 | + TrustedDataObjScope Scope = "tdo" |
| 265 | + // PayloadScope indicates the assertion applies only to the payload data. |
| 266 | + // This is the most common scope for data handling assertions. |
| 267 | + PayloadScope Scope = "payload" |
| 268 | +) |
| 269 | + |
| 270 | +// String returns the string representation of the scope. |
| 271 | +func (s Scope) String() string { |
| 272 | + return string(s) |
| 273 | +} |
| 274 | + |
| 275 | +// AppliesToState indicates when the assertion is relevant in the TDF lifecycle. |
| 276 | +// |
| 277 | +// This determines whether the assertion should be processed before or after |
| 278 | +// decryption, enabling different handling patterns: |
| 279 | +// - Encrypted: Process before decryption (e.g., access logging) |
| 280 | +// - Unencrypted: Process after decryption (e.g., content filtering) |
| 281 | +type AppliesToState string |
| 282 | + |
| 283 | +const ( |
| 284 | + // Encrypted means the assertion should be processed before payload decryption. |
| 285 | + // Used for access control, audit logging, and pre-processing requirements. |
| 286 | + Encrypted AppliesToState = "encrypted" |
| 287 | + // Unencrypted means the assertion should be processed after payload decryption. |
| 288 | + // Used for content analysis, post-processing, and data handling requirements. |
| 289 | + Unencrypted AppliesToState = "unencrypted" |
| 290 | +) |
| 291 | + |
| 292 | +// String returns the string representation of the applies to state. |
| 293 | +func (ats AppliesToState) String() string { |
| 294 | + return string(ats) |
| 295 | +} |
| 296 | + |
| 297 | +// BindingMethod represents the cryptographic method used to bind assertions to the TDF. |
| 298 | +// |
| 299 | +// The binding method ensures assertions cannot be modified or transferred |
| 300 | +// to other TDFs without detection. |
| 301 | +type BindingMethod string |
| 302 | + |
| 303 | +const ( |
| 304 | + // JWS (JSON Web Signature) is the standard method for assertion binding. |
| 305 | + // Uses JWT-based cryptographic signatures for tamper detection. |
| 306 | + JWS BindingMethod = "jws" |
| 307 | +) |
| 308 | + |
| 309 | +// String returns the string representation of the binding method. |
| 310 | +func (bm BindingMethod) String() string { |
| 311 | + return string(bm) |
| 312 | +} |
| 313 | + |
| 314 | +// AssertionKeyAlg represents the cryptographic algorithm for assertion signing keys. |
| 315 | +// |
| 316 | +// Different algorithms provide different security and compatibility characteristics: |
| 317 | +// - RS256: RSA-based signatures, widely supported, good for public key scenarios |
| 318 | +// - HS256: HMAC-based signatures, simpler, good for shared key scenarios |
| 319 | +type AssertionKeyAlg string |
| 320 | + |
| 321 | +const ( |
| 322 | + // AssertionKeyAlgRS256 uses RSA-SHA256 for assertion signatures. |
| 323 | + // Suitable when assertions need to be verified by parties without access to signing keys. |
| 324 | + AssertionKeyAlgRS256 AssertionKeyAlg = "RS256" |
| 325 | + // AssertionKeyAlgHS256 uses HMAC-SHA256 for assertion signatures. |
| 326 | + // More efficient, suitable when the same key used for TDF encryption can sign assertions. |
| 327 | + AssertionKeyAlgHS256 AssertionKeyAlg = "HS256" |
| 328 | +) |
| 329 | + |
| 330 | +// String returns the string representation of the algorithm. |
| 331 | +func (a AssertionKeyAlg) String() string { |
| 332 | + return string(a) |
| 333 | +} |
| 334 | + |
| 335 | +// AssertionKey represents a cryptographic key for signing and verifying assertions. |
| 336 | +// |
| 337 | +// The key can be either RSA or HMAC-based depending on the algorithm: |
| 338 | +// - RS256: Key should be an RSA private key (*rsa.PrivateKey or jwk.Key) |
| 339 | +// - HS256: Key should be a byte slice containing the shared secret |
| 340 | +// |
| 341 | +// Example usage: |
| 342 | +// |
| 343 | +// // HMAC key using TDF's Data Encryption Key |
| 344 | +// hmacKey := AssertionKey{ |
| 345 | +// Alg: AssertionKeyAlgHS256, |
| 346 | +// Key: dek, // 32-byte AES key |
| 347 | +// } |
| 348 | +// |
| 349 | +// // RSA key for public key scenarios |
| 350 | +// rsaKey := AssertionKey{ |
| 351 | +// Alg: AssertionKeyAlgRS256, |
| 352 | +// Key: privateKey, // *rsa.PrivateKey |
| 353 | +// } |
| 354 | +type AssertionKey struct { |
| 355 | + // Alg specifies the cryptographic algorithm for this key |
| 356 | + Alg AssertionKeyAlg |
| 357 | + // Key contains the actual key material (type depends on algorithm) |
| 358 | + Key interface{} |
| 359 | +} |
| 360 | + |
| 361 | +// Algorithm returns the cryptographic algorithm of the key. |
| 362 | +func (k AssertionKey) Algorithm() AssertionKeyAlg { |
| 363 | + return k.Alg |
| 364 | +} |
| 365 | + |
| 366 | +// IsEmpty returns true if the key has no algorithm or key material configured. |
| 367 | +// Used to check if a default signing key should be used instead. |
| 368 | +func (k AssertionKey) IsEmpty() bool { |
| 369 | + return k.Key == nil && k.Alg == "" |
| 370 | +} |
| 371 | + |
| 372 | +// AssertionVerificationKeys represents the verification keys for assertions. |
| 373 | +type AssertionVerificationKeys struct { |
| 374 | + // Default key to use if the key for the assertion ID is not found. |
| 375 | + DefaultKey AssertionKey |
| 376 | + // Map of assertion ID to key. |
| 377 | + Keys map[string]AssertionKey |
| 378 | +} |
| 379 | + |
| 380 | +// Get returns the key for the given assertion ID or the default key if the key is not found. |
| 381 | +// If the default key is not set, it returns an empty key. |
| 382 | +func (k AssertionVerificationKeys) Get(assertionID string) (AssertionKey, error) { |
| 383 | + if key, ok := k.Keys[assertionID]; ok { |
| 384 | + return key, nil |
| 385 | + } |
| 386 | + if k.DefaultKey.IsEmpty() { |
| 387 | + return AssertionKey{}, nil |
| 388 | + } |
| 389 | + return k.DefaultKey, nil |
| 390 | +} |
| 391 | + |
| 392 | +// IsEmpty returns true if the default key and the keys map are empty. |
| 393 | +func (k AssertionVerificationKeys) IsEmpty() bool { |
| 394 | + return k.DefaultKey.IsEmpty() && len(k.Keys) == 0 |
| 395 | +} |
0 commit comments