You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: docs/source/how_to/how_to_benchmarking.ipynb
+28-16Lines changed: 28 additions & 16 deletions
Original file line number
Diff line number
Diff line change
@@ -135,6 +135,18 @@
135
135
"cell_type": "markdown",
136
136
"id": "10",
137
137
"metadata": {},
138
+
"source": [
139
+
":::{note}\n",
140
+
"\n",
141
+
"For details on using other plotting backends, see [How to change the plotting backend](how_to_change_plotting_backend.ipynb).\n",
142
+
"\n",
143
+
":::"
144
+
]
145
+
},
146
+
{
147
+
"cell_type": "markdown",
148
+
"id": "11",
149
+
"metadata": {},
138
150
"source": [
139
151
"The x axis shows runtime per problem. The y axis shows the share of problems each algorithm solved within that runtime. Thus, higher and further to the left values are desirable. Higher means more problems were solved and further to the left means, the algorithm found the solutions earlier. \n",
140
152
"\n",
@@ -150,7 +162,7 @@
150
162
{
151
163
"cell_type": "code",
152
164
"execution_count": null,
153
-
"id": "11",
165
+
"id": "12",
154
166
"metadata": {},
155
167
"outputs": [],
156
168
"source": [
@@ -167,7 +179,7 @@
167
179
},
168
180
{
169
181
"cell_type": "markdown",
170
-
"id": "12",
182
+
"id": "13",
171
183
"metadata": {},
172
184
"source": [
173
185
"## 4b. Convergence plots\n",
@@ -178,7 +190,7 @@
178
190
{
179
191
"cell_type": "code",
180
192
"execution_count": null,
181
-
"id": "13",
193
+
"id": "14",
182
194
"metadata": {},
183
195
"outputs": [],
184
196
"source": [
@@ -194,7 +206,7 @@
194
206
},
195
207
{
196
208
"cell_type": "markdown",
197
-
"id": "14",
209
+
"id": "15",
198
210
"metadata": {},
199
211
"source": [
200
212
"The further to the left and the lower the curve of an algorithm, the better that algorithm performed.\n",
@@ -205,7 +217,7 @@
205
217
{
206
218
"cell_type": "code",
207
219
"execution_count": null,
208
-
"id": "15",
220
+
"id": "16",
209
221
"metadata": {},
210
222
"outputs": [],
211
223
"source": [
@@ -223,7 +235,7 @@
223
235
},
224
236
{
225
237
"cell_type": "markdown",
226
-
"id": "16",
238
+
"id": "17",
227
239
"metadata": {},
228
240
"source": [
229
241
"## 5a. Convergence report\n",
@@ -235,7 +247,7 @@
235
247
{
236
248
"cell_type": "code",
237
249
"execution_count": null,
238
-
"id": "17",
250
+
"id": "18",
239
251
"metadata": {},
240
252
"outputs": [],
241
253
"source": [
@@ -251,7 +263,7 @@
251
263
{
252
264
"cell_type": "code",
253
265
"execution_count": null,
254
-
"id": "18",
266
+
"id": "19",
255
267
"metadata": {},
256
268
"outputs": [],
257
269
"source": [
@@ -260,18 +272,18 @@
260
272
},
261
273
{
262
274
"cell_type": "markdown",
263
-
"id": "19",
275
+
"id": "20",
264
276
"metadata": {},
265
277
"source": [
266
-
"## 5b. Rank report¶\n",
278
+
"## 5b. Rank report\n",
267
279
"\n",
268
280
"The **Rank Report** shows the ranks of the algorithms for each problem; where 0 means the algorithm was the fastest on a given benchmark problem, 1 means it was the second fastest and so on. If an algorithm did not converge on a problem, the value is \"failed\". If an algorithm did encounter an error during optimization, the value is \"error\"."
269
281
]
270
282
},
271
283
{
272
284
"cell_type": "code",
273
285
"execution_count": null,
274
-
"id": "20",
286
+
"id": "21",
275
287
"metadata": {},
276
288
"outputs": [],
277
289
"source": [
@@ -288,7 +300,7 @@
288
300
{
289
301
"cell_type": "code",
290
302
"execution_count": null,
291
-
"id": "21",
303
+
"id": "22",
292
304
"metadata": {},
293
305
"outputs": [],
294
306
"source": [
@@ -297,18 +309,18 @@
297
309
},
298
310
{
299
311
"cell_type": "markdown",
300
-
"id": "22",
312
+
"id": "23",
301
313
"metadata": {},
302
314
"source": [
303
-
"## 5b. Traceback report¶\n",
315
+
"## 5b. Traceback report\n",
304
316
"\n",
305
317
"The **Traceback Report** shows the tracebacks returned by the optimizers if they encountered an error during optimization. The resulting ```pd.DataFrame``` is empty if none of the optimizers terminated with an error, as in the example below."
0 commit comments