|
273 | 273 | },
|
274 | 274 | {
|
275 | 275 | "cell_type": "code",
|
276 |
| - "execution_count": 4, |
| 276 | + "execution_count": null, |
277 | 277 | "metadata": {},
|
278 | 278 | "outputs": [
|
279 | 279 | {
|
|
293 | 293 | }
|
294 | 294 | ],
|
295 | 295 | "source": [
|
296 |
| - "fig, ax = plt.subplots()\n", |
| 296 | + "_, ax = plt.subplots()\n", |
297 | 297 | "DATA.set_index(\"Weeks\").plot(ax=ax)\n",
|
298 | 298 | "ax.set_title(\"Time series of the data\")\n",
|
299 | 299 | "ax.set_ylabel(\"Spending\")\n",
|
|
320 | 320 | },
|
321 | 321 | {
|
322 | 322 | "cell_type": "code",
|
323 |
| - "execution_count": 5, |
| 323 | + "execution_count": null, |
324 | 324 | "metadata": {},
|
325 | 325 | "outputs": [
|
326 | 326 | {
|
|
374 | 374 | " target = pm.draw(true_model.y, random_seed=SEED)\n",
|
375 | 375 | "\n",
|
376 | 376 | " # Plot the simulated target series\n",
|
377 |
| - " fig, ax = plt.subplots()\n", |
| 377 | + " _, ax = plt.subplots()\n", |
378 | 378 | " ax.set_title(\"Target\")\n",
|
379 | 379 | " ax.plot(DATA.Weeks, target, label=\"Sales\")\n",
|
380 | 380 | " ax.plot(DATA.Weeks, synthetic_intercept, label=\"Synthetic intercept\")\n",
|
|
531 | 531 | },
|
532 | 532 | {
|
533 | 533 | "cell_type": "code",
|
534 |
| - "execution_count": 8, |
| 534 | + "execution_count": null, |
535 | 535 | "metadata": {},
|
536 | 536 | "outputs": [
|
537 | 537 | {
|
|
610 | 610 | " mmm.y = target_series.values\n",
|
611 | 611 | "\n",
|
612 | 612 | " # Plot the posterior predictive\n",
|
613 |
| - " fig, ax = plt.subplots()\n", |
| 613 | + " _, ax = plt.subplots()\n", |
614 | 614 | " mmm.plot_posterior_predictive(original_scale=True, add_mean=False, ax=ax)\n",
|
615 | 615 | " split_index = DATA.shape[0] - SPLIT_N\n",
|
616 | 616 | " ax.axvline(\n",
|
|
727 | 727 | },
|
728 | 728 | {
|
729 | 729 | "cell_type": "code",
|
730 |
| - "execution_count": 10, |
| 730 | + "execution_count": null, |
731 | 731 | "metadata": {},
|
732 | 732 | "outputs": [
|
733 | 733 | {
|
|
761 | 761 | " )\n",
|
762 | 762 | "\n",
|
763 | 763 | " # Plot posterior intercept versus actual\n",
|
764 |
| - " fig, ax = plt.subplots()\n", |
| 764 | + " _, ax = plt.subplots()\n", |
765 | 765 | " ax.set_title(\"Posterior intercept vs actual\")\n",
|
766 | 766 | " ax.plot(\n",
|
767 | 767 | " mmm.posterior_predictive.date, intercept_posterior_mean, label=\"Posterior mean\"\n",
|
|
0 commit comments