@@ -131,6 +131,7 @@ The following table indicates the compatibility between versions of
131
131
| ` torchcodec ` | ` torch ` | Python |
132
132
| ------------------ | ------------------ | ------------------- |
133
133
| ` main ` / ` nightly ` | ` main ` / ` nightly ` | ` >=3.10 ` , ` <=3.13 ` |
134
+ | ` 0.7 ` | ` 2.8 ` | ` >=3.9 ` , ` <=3.13 ` |
134
135
| ` 0.6 ` | ` 2.8 ` | ` >=3.9 ` , ` <=3.13 ` |
135
136
| ` 0.5 ` | ` 2.7 ` | ` >=3.9 ` , ` <=3.13 ` |
136
137
| ` 0.4 ` | ` 2.7 ` | ` >=3.9 ` , ` <=3.13 ` |
@@ -145,12 +146,7 @@ First, make sure you have a GPU that has NVDEC hardware that can decode the
145
146
format you want. Refer to Nvidia's GPU support matrix for more details
146
147
[ here] ( https://developer.nvidia.com/video-encode-and-decode-gpu-support-matrix-new ) .
147
148
148
- 1 . Install Pytorch corresponding to your CUDA Toolkit using the
149
- [ official instructions] ( https://pytorch.org/get-started/locally/ ) . You'll
150
- need the ` libnpp ` and ` libnvrtc ` CUDA libraries, which are usually part of
151
- the CUDA Toolkit.
152
-
153
- 2 . Install or compile FFmpeg with NVDEC support.
149
+ 1 . Install FFmpeg with NVDEC support.
154
150
TorchCodec with CUDA should work with FFmpeg versions in [ 4, 7] .
155
151
156
152
If FFmpeg is not already installed, or you need a more recent version, an
@@ -162,10 +158,6 @@ format you want. Refer to Nvidia's GPU support matrix for more details
162
158
conda install " ffmpeg<8" -c conda-forge
163
159
```
164
160
165
- If you are building FFmpeg from source you can follow Nvidia's guide to
166
- configuring and installing FFmpeg with NVDEC support
167
- [ here] ( https://docs.nvidia.com/video-technologies/video-codec-sdk/12.0/ffmpeg-with-nvidia-gpu/index.html ) .
168
-
169
161
After installing FFmpeg make sure it has NVDEC support when you list the supported
170
162
decoders:
171
163
@@ -181,8 +173,18 @@ format you want. Refer to Nvidia's GPU support matrix for more details
181
173
ffmpeg -hwaccel cuda -hwaccel_output_format cuda -i test/resources/nasa_13013.mp4 -f null -
182
174
```
183
175
184
- 3 . Install TorchCodec by passing in an ` --index-url ` parameter that corresponds
185
- to your CUDA Toolkit version, example:
176
+ #### Linux
177
+
178
+ 2 . Install Pytorch corresponding to your CUDA Toolkit using the
179
+ [ official instructions] ( https://pytorch.org/get-started/locally/ ) . You'll
180
+ need the ` libnpp ` and ` libnvrtc ` CUDA libraries, which are usually part of
181
+ the CUDA Toolkit.
182
+
183
+
184
+ 3 . Install TorchCodec
185
+
186
+ Pass in an ` --index-url ` parameter that corresponds to your CUDA Toolkit
187
+ version, for example:
186
188
187
189
``` bash
188
190
# This corresponds to CUDA Toolkit version 12.6. It should be the same one
@@ -193,6 +195,15 @@ format you want. Refer to Nvidia's GPU support matrix for more details
193
195
Note that without passing in the ` --index-url ` parameter, ` pip ` installs
194
196
the CPU-only version of TorchCodec.
195
197
198
+ #### Windows
199
+
200
+ 2 . On Windows (experimental support), you'll need to rely on ` conda ` to install
201
+ both pytorch and TorchCodec:
202
+
203
+ ``` bash
204
+ conda install -c conda-forge " torchcodec=*=*cuda*"
205
+ ```
206
+
196
207
## Benchmark Results
197
208
198
209
The following was generated by running [ our benchmark script] ( ./benchmarks/decoders/generate_readme_data.py ) on a lightly loaded 22-core machine with an Nvidia A100 with
0 commit comments