@@ -213,33 +213,37 @@ def coherence_limit_error(
213
213
r"""
214
214
The error per gate (1 - average_gate_fidelity) given by the T1,T2 limit
215
215
assuming qubit-wise gate-independent amplitude damping error
216
- (or thermal relaxation error with no excitation).
217
-
218
- That means, suppose the gate length $t$, the Choi matrix of the amplitude damping channel
219
- $\Lambda_q$ for a single qubit $q$ with $T_1$ and $T_2$ is give by
220
- $$
221
- \begin{bmatrix}
222
- 1 & 0 & 0 & e^{-\frac{t}{T_2}} \\
223
- 0 & 0 & 0 & 0 \\
224
- 0 & 0 & 1-e^{-\frac{t}{T_1}} & 0 \\
225
- e^{-\frac{t}{T_2}} & 0 & 0 & e^{-\frac{t}{T_1}} \\
226
- \end{bmatrix}
227
- $$.
228
- The coherence limit error computed by this function is $1 - F_{\text{ave}}(\mathcal{E}, U)$
229
- where
230
- And the following equality holds.
231
- $$
216
+ (i.e. thermal relaxation error with no excitation).
217
+
218
+ That means, suppose the gate length $t$, we are considering a quantum error channel
219
+ whose Choi matrix representation for a single qubit with $T_1$ and $T_2$ is give by
220
+
221
+ .. math::
222
+
223
+ \begin{bmatrix}
224
+ 1 & 0 & 0 & e^{-\frac{t}{T_2}} \\
225
+ 0 & 0 & 0 & 0 \\
226
+ 0 & 0 & 1-e^{-\frac{t}{T_1}} & 0 \\
227
+ e^{-\frac{t}{T_2}} & 0 & 0 & e^{-\frac{t}{T_1}} \\
228
+ \end{bmatrix}
229
+
230
+ The coherence limit error computed by this function is
231
+ :math:`1 - F_{\text{avg}}(\mathcal{E}, U)` and the following equalities hold for tha value.
232
+
233
+ .. math::
234
+
232
235
\begin{align}
233
- 1 - F_{\text{ave }}(\mathcal{E}, U)
236
+ 1 - F_{\text{avg }}(\mathcal{E}, U)
234
237
&= \frac{d}{d+1} \left(1 - F_{\text{pro}}(\mathcal{E}, U)\right) \\
235
238
&= \frac{d}{d+1} \left(1 - \frac{Tr[S_U^\dagger S_{\mathcal{E}}]}{d^2}\right) \\
236
239
&= \frac{d}{d+1} \left(1 - \frac{Tr[S_{\Lambda}]}{d^2}\right)
237
240
\end{align}
238
- $$
239
- where $F_{\text{avg}}(\mathcal{E}, U)$ and $F_{\text{pro}}(\mathcal{E}, U)$ are
240
- the average gate fidelity and the process fidelity of a quantum channel $\mathcal{E}$
241
- with a target unitary $U$, respectively, and $d$ is the dimension of Hilbert space of
242
- the considering qubit system.
241
+
242
+ where :math:`F_{\text{avg}}(\mathcal{E}, U)` and :math:`F_{\text{pro}}(\mathcal{E}, U)` are
243
+ the average gate fidelity and the process fidelity of a quantum channel :math:`\mathcal{E}`
244
+ with a target unitary $U$ such that :math:`\mathcal{E}=\Lambda(U)`, respectively,
245
+ $d$ is the dimension of Hilbert space of the considering qubit system, and
246
+ :math:`S_{\Lambda}` is the Liouville Superoperator representation of a channel :math:`\Lambda`.
243
247
244
248
Args:
245
249
num_qubits: Number of qubits.
0 commit comments