Skip to content

Commit 959202f

Browse files
committed
Fix docstaring
1 parent 03d130c commit 959202f

File tree

1 file changed

+26
-22
lines changed
  • qiskit_experiments/library/randomized_benchmarking

1 file changed

+26
-22
lines changed

qiskit_experiments/library/randomized_benchmarking/rb_utils.py

Lines changed: 26 additions & 22 deletions
Original file line numberDiff line numberDiff line change
@@ -213,33 +213,37 @@ def coherence_limit_error(
213213
r"""
214214
The error per gate (1 - average_gate_fidelity) given by the T1,T2 limit
215215
assuming qubit-wise gate-independent amplitude damping error
216-
(or thermal relaxation error with no excitation).
217-
218-
That means, suppose the gate length $t$, the Choi matrix of the amplitude damping channel
219-
$\Lambda_q$ for a single qubit $q$ with $T_1$ and $T_2$ is give by
220-
$$
221-
\begin{bmatrix}
222-
1 & 0 & 0 & e^{-\frac{t}{T_2}} \\
223-
0 & 0 & 0 & 0 \\
224-
0 & 0 & 1-e^{-\frac{t}{T_1}} & 0 \\
225-
e^{-\frac{t}{T_2}} & 0 & 0 & e^{-\frac{t}{T_1}} \\
226-
\end{bmatrix}
227-
$$.
228-
The coherence limit error computed by this function is $1 - F_{\text{ave}}(\mathcal{E}, U)$
229-
where
230-
And the following equality holds.
231-
$$
216+
(i.e. thermal relaxation error with no excitation).
217+
218+
That means, suppose the gate length $t$, we are considering a quantum error channel
219+
whose Choi matrix representation for a single qubit with $T_1$ and $T_2$ is give by
220+
221+
.. math::
222+
223+
\begin{bmatrix}
224+
1 & 0 & 0 & e^{-\frac{t}{T_2}} \\
225+
0 & 0 & 0 & 0 \\
226+
0 & 0 & 1-e^{-\frac{t}{T_1}} & 0 \\
227+
e^{-\frac{t}{T_2}} & 0 & 0 & e^{-\frac{t}{T_1}} \\
228+
\end{bmatrix}
229+
230+
The coherence limit error computed by this function is
231+
:math:`1 - F_{\text{avg}}(\mathcal{E}, U)` and the following equalities hold for tha value.
232+
233+
.. math::
234+
232235
\begin{align}
233-
1 - F_{\text{ave}}(\mathcal{E}, U)
236+
1 - F_{\text{avg}}(\mathcal{E}, U)
234237
&= \frac{d}{d+1} \left(1 - F_{\text{pro}}(\mathcal{E}, U)\right) \\
235238
&= \frac{d}{d+1} \left(1 - \frac{Tr[S_U^\dagger S_{\mathcal{E}}]}{d^2}\right) \\
236239
&= \frac{d}{d+1} \left(1 - \frac{Tr[S_{\Lambda}]}{d^2}\right)
237240
\end{align}
238-
$$
239-
where $F_{\text{avg}}(\mathcal{E}, U)$ and $F_{\text{pro}}(\mathcal{E}, U)$ are
240-
the average gate fidelity and the process fidelity of a quantum channel $\mathcal{E}$
241-
with a target unitary $U$, respectively, and $d$ is the dimension of Hilbert space of
242-
the considering qubit system.
241+
242+
where :math:`F_{\text{avg}}(\mathcal{E}, U)` and :math:`F_{\text{pro}}(\mathcal{E}, U)` are
243+
the average gate fidelity and the process fidelity of a quantum channel :math:`\mathcal{E}`
244+
with a target unitary $U$ such that :math:`\mathcal{E}=\Lambda(U)`, respectively,
245+
$d$ is the dimension of Hilbert space of the considering qubit system, and
246+
:math:`S_{\Lambda}` is the Liouville Superoperator representation of a channel :math:`\Lambda`.
243247
244248
Args:
245249
num_qubits: Number of qubits.

0 commit comments

Comments
 (0)