|
19 | 19 | blocksize = 4096 |
20 | 20 | num_files = 12 |
21 | 21 | end_column = 48601 |
| 22 | +#blocksize = 4096 |
| 23 | +#num_files = 1 |
| 24 | +#end_column = 4095 |
22 | 25 |
|
23 | 26 | splits = [(blocksize*i, blocksize*(i+1)-1) for i in range(num_files)] |
24 | 27 | splits[-1] = (splits[-1][0], end_column) |
|
31 | 34 | efiles.append(nc4.Dataset(name, 'r')) |
32 | 35 |
|
33 | 36 | plt.autoscale(tight=True) |
34 | | -cmap = plt.get_cmap('Reds') |
| 37 | +cmap = plt.get_cmap('Greys') |
35 | 38 |
|
36 | 39 | total_evalues = 0 |
37 | 40 | for efile in efiles: |
|
75 | 78 | circle_rad = np.log10(1./300.)-cutoff_exp |
76 | 79 | circle_x = circle_rad * np.cos(np.linspace(0., 2.*np.pi, 1001)) |
77 | 80 | circle_y = circle_rad * np.sin(np.linspace(0., 2.*np.pi, 1001)) |
78 | | -plt.plot(circle_x, circle_y) |
| 81 | +plt.plot(circle_x, circle_y, color='b') |
79 | 82 | converge_rad = 1./300. |
80 | 83 | converge_x = converge_rad * (np.cos(np.linspace(0., 2.*np.pi, 1001)) - 1.) |
81 | 84 | converge_y = converge_rad * np.sin(np.linspace(0., 2.*np.pi, 1001)) |
|
84 | 87 | plot_abs = np.maximum(np.log10(converge_abs) - cutoff_exp, 0.) |
85 | 88 | plot_x = plot_abs * np.cos(converge_angle) |
86 | 89 | plot_y = plot_abs * np.sin(converge_angle) |
87 | | -plt.plot(plot_x, plot_y) |
| 90 | +plt.plot(plot_x, plot_y, color='g') |
88 | 91 | plt.axvline(x=0., color='k', linewidth=2.) |
89 | 92 | plt.axhline(y=0., color='k', linewidth=2.) |
90 | 93 | plt.axis([-max_plotval, max_plotval, -max_plotval, max_plotval]) |
91 | | -ticks = np.arange(-max_plotval, max_plotval+1., 1) |
| 94 | +ticks = np.arange(-max_plotval, max_plotval+1., 2) |
92 | 95 | # The "0.01" hack below is there to ensure that "0" outputs a 10 with a positive sign. |
93 | 96 | tickvals = ["${}^{{{}}}$".format(int(np.sign(i+0.01)*10),int(abs(i)+cutoff_exp)) for i in ticks] |
94 | 97 | ax = plt.gca() |
95 | 98 | ax.set_xticks(ticks) |
96 | | -ax.set_xticklabels(tickvals) |
| 99 | +ax.set_xticklabels(tickvals, fontsize=16) |
97 | 100 | ax.set_yticks(ticks) |
98 | | -ax.set_yticklabels(tickvals) |
99 | | -plt.clim(vmin=0., vmax=1.e4) |
| 101 | +ax.set_yticklabels(tickvals, fontsize=16) |
| 102 | +plt.clim(vmin=0., vmax=8.e3) |
100 | 103 | plt.colorbar() |
101 | | -plt.savefig('./complex_eigenvalues.png') |
| 104 | +plt.savefig('./complex_eigenvalues.eps') |
102 | 105 | plt.close() |
103 | 106 |
|
104 | 107 | midpoint = nbins // 2 |
|
130 | 133 | plt.bar(bin_centers, real_zeros, |
131 | 134 | width=(bins[1]-bins[0]), color='b', label='Real zeros') |
132 | 135 | plt.legend(loc='best') |
133 | | -ticks = np.arange(-max_plotval, max_plotval+1., 1) |
| 136 | +ticks = np.arange(-max_plotval, max_plotval+1., 2) |
134 | 137 | tickvals = ["${}^{{{}}}$".format(int(np.sign(i+0.01)*10),int(abs(i)+cutoff_exp)) for i in ticks] |
135 | 138 | ax = plt.gca() |
| 139 | +ax.ticklabel_format(style='sci') |
136 | 140 | ax.set_xlim(left=bins[0], right=bins[-1]) |
137 | 141 | ax.set_xticks(ticks) |
138 | | -ax.set_xticklabels(tickvals) |
139 | | -plt.savefig('./complex_vertint.png') |
| 142 | +ax.set_xticklabels(tickvals, fontsize=16) |
| 143 | +plt.yticks(fontsize=16) |
| 144 | +plt.savefig('./complex_vertint.eps') |
140 | 145 | plt.close() |
141 | 146 |
|
142 | 147 | plt.plot(bin_centers, real_zeros / all_zeros, color='k') |
143 | | -ticks = np.arange(-max_plotval, max_plotval+1., 1) |
| 148 | +ticks = np.arange(-max_plotval, max_plotval+1., 2) |
144 | 149 | tickvals = ["${}^{{{}}}$".format(int(np.sign(i+0.01)*10),int(abs(i)+cutoff_exp)) for i in ticks] |
145 | 150 | ax = plt.gca() |
| 151 | +ax.ticklabel_format(style='sci') |
146 | 152 | ax.set_xticks(ticks) |
147 | | -ax.set_xticklabels(tickvals) |
148 | | -plt.savefig('./complex_ratio.png') |
| 153 | +ax.set_xticklabels(tickvals, fontsize=16) |
| 154 | +plt.yticks(fontsize=16) |
| 155 | +plt.savefig('./complex_ratio.eps') |
149 | 156 | plt.close() |
150 | 157 |
|
151 | 158 | plt.bar(bin_centers, all_zeros, |
152 | 159 | width=(bins[1]-bins[0]), color='r', label='All zeros') |
153 | 160 | plt.bar(bin_centers, real_zeros + near_real_zeros, |
154 | 161 | width=(bins[1]-bins[0]), color='b', label='Real zeros') |
155 | 162 | plt.legend(loc='best') |
156 | | -ticks = np.arange(-max_plotval, max_plotval+1., 1) |
| 163 | +ticks = np.arange(-max_plotval, max_plotval+1., 2) |
157 | 164 | tickvals = ["${}^{{{}}}$".format(int(np.sign(i+0.01)*10),int(abs(i)+cutoff_exp)) for i in ticks] |
158 | 165 | ax = plt.gca() |
| 166 | +ax.ticklabel_format(style='sci') |
159 | 167 | ax.set_xlim(left=bins[0], right=bins[-1]) |
160 | 168 | ax.set_xticks(ticks) |
161 | | -ax.set_xticklabels(tickvals) |
162 | | -plt.savefig('./complex_vertint_cutoff.png') |
| 169 | +ax.set_xticklabels(tickvals, fontsize=16) |
| 170 | +plt.yticks(fontsize=16) |
| 171 | +plt.savefig('./complex_vertint_cutoff.eps') |
163 | 172 | plt.close() |
164 | 173 |
|
165 | 174 | plt.plot(bin_centers, (real_zeros + near_real_zeros) / all_zeros, color='k') |
166 | | -ticks = np.arange(-max_plotval, max_plotval+1., 1) |
| 175 | +ticks = np.arange(-max_plotval, max_plotval+1., 2) |
167 | 176 | tickvals = ["${}^{{{}}}$".format(int(np.sign(i+0.01)*10),int(abs(i)+cutoff_exp)) for i in ticks] |
168 | 177 | ax = plt.gca() |
| 178 | +ax.ticklabel_format(style='sci') |
169 | 179 | ax.set_xticks(ticks) |
170 | | -ax.set_xticklabels(tickvals) |
171 | | -plt.savefig('./complex_ratio_cutoff.png') |
| 180 | +ax.set_xticklabels(tickvals, fontsize=16) |
| 181 | +plt.yticks(fontsize=16) |
| 182 | +plt.savefig('./complex_ratio_cutoff.eps') |
172 | 183 | plt.close() |
0 commit comments