- 
                Notifications
    
You must be signed in to change notification settings  - Fork 55
 
Description
Hi,
In chapter 5 : Master Spark with R, when I try to run these code, it worked
okc_train %>%
ft_string_indexer(input_col = "sex", output_col = "sex_indexed") %>%
ft_string_indexer(input_col = "drinks", output_col = "drinks_indexed") %>%
ft_string_indexer(input_col = "drugs", output_col = "drugs_indexed") %>%
select(age, sex_indexed, drinks_indexed, drugs_indexed, essay_length) %>%
ft_one_hot_encoder_estimator(
input_cols = c("sex_indexed", "drinks_indexed", "drugs_indexed"),
output_cols = c("sex_encoded", "drinks_encoded", "drugs_encoded")
)
But the original one :
pipeline <- ml_pipeline(sc) %>%
ft_string_indexer(input_col = "sex", output_col = "sex_indexed") %>%
ft_string_indexer(input_col = "drinks", output_col = "drinks_indexed") %>%
ft_string_indexer(input_col = "drugs", output_col = "drugs_indexed") %>%
ft_one_hot_encoder_estimator(
input_cols = c("sex_indexed", "drinks_indexed", "drugs_indexed"),
output_cols = c("sex_encoded", "drinks_encoded", "drugs_encoded"))
pipeline_model <- ml_fit(pipeline, okc_train)
gave out the error :
Error in as.character(call[[1]]) :
cannot coerce type 'closure' to vector of type 'character'
I don't know where the error comes from, since the vectors are all in numeric not in character.