|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "id": "0", |
| 6 | + "metadata": {}, |
| 7 | + "source": [ |
| 8 | + "# McStas to NeXus for ODIN\n", |
| 9 | + "\n", |
| 10 | + "This notebook converts data from a McStas simulation output (`.h5` filetype) to a NeXus file that uses a file for the Odin instrument (written by CODA) as a template for the geometry information.\n", |
| 11 | + "\n", |
| 12 | + "It adds events to the `timepix3` detector and the `beam_monitor_3` monitor." |
| 13 | + ] |
| 14 | + }, |
| 15 | + { |
| 16 | + "cell_type": "code", |
| 17 | + "execution_count": null, |
| 18 | + "id": "1", |
| 19 | + "metadata": {}, |
| 20 | + "outputs": [], |
| 21 | + "source": [ |
| 22 | + "import numpy as np\n", |
| 23 | + "import scipp as sc\n", |
| 24 | + "import scippnexus as sx\n", |
| 25 | + "import h5py as h5\n", |
| 26 | + "import shutil" |
| 27 | + ] |
| 28 | + }, |
| 29 | + { |
| 30 | + "cell_type": "code", |
| 31 | + "execution_count": null, |
| 32 | + "id": "2", |
| 33 | + "metadata": {}, |
| 34 | + "outputs": [], |
| 35 | + "source": [ |
| 36 | + "def load_mcstas_simulation_data(\n", |
| 37 | + " file_path,\n", |
| 38 | + " nevents,\n", |
| 39 | + " data_path=\"entry1/data/transmission_event_signal_dat_list_p_t_x_y_z_vx_vy_vz/events\",\n", |
| 40 | + "):\n", |
| 41 | + " nevents = int(nevents)\n", |
| 42 | + " with sx.File(file_path, \"r\") as f:\n", |
| 43 | + " # The name p_t_x_y_z_vx_vy_vz represents\n", |
| 44 | + " # probability, time of arrival, position(x, y, z) and velocity(vx, vy, vz).\n", |
| 45 | + " # The name also represents the order of each field in the table.\n", |
| 46 | + " # For example, probability is the first field, so data['dim_1', 0] is the probability.\n", |
| 47 | + " data = f[data_path][()].rename_dims({\"dim_0\": \"event\"})\n", |
| 48 | + "\n", |
| 49 | + " probabilities = data[\"dim_1\", 0].copy()\n", |
| 50 | + " probabilities.unit = \"dimensionless\"\n", |
| 51 | + " time_of_arrival = data[\"dim_1\", 1].copy()\n", |
| 52 | + " time_of_arrival.unit = \"s\" # Hardcoded unit from the data.\n", |
| 53 | + " positions = data[\"dim_1\", 2:5]\n", |
| 54 | + " # Units are hardcoded from the data.\n", |
| 55 | + " x_pos = positions[\"dim_1\", 0].copy()\n", |
| 56 | + " x_pos.unit = \"m\"\n", |
| 57 | + " y_pos = positions[\"dim_1\", 1].copy()\n", |
| 58 | + " y_pos.unit = \"m\"\n", |
| 59 | + "\n", |
| 60 | + " inds = np.random.choice(\n", |
| 61 | + " np.arange(data.sizes[\"event\"]),\n", |
| 62 | + " nevents,\n", |
| 63 | + " p=probabilities.values / probabilities.values.sum(),\n", |
| 64 | + " )\n", |
| 65 | + "\n", |
| 66 | + " out = sc.DataArray(\n", |
| 67 | + " data=sc.array(\n", |
| 68 | + " dims=probabilities.dims,\n", |
| 69 | + " values=np.ones(nevents),\n", |
| 70 | + " unit=\"counts\",\n", |
| 71 | + " ),\n", |
| 72 | + " coords={\n", |
| 73 | + " \"time_of_arrival\": sc.array(\n", |
| 74 | + " dims=time_of_arrival.dims,\n", |
| 75 | + " values=time_of_arrival.to(unit=\"us\").values[inds],\n", |
| 76 | + " unit=\"us\",\n", |
| 77 | + " ),\n", |
| 78 | + " \"x\": sc.array(\n", |
| 79 | + " dims=x_pos.dims,\n", |
| 80 | + " values=x_pos.values[inds],\n", |
| 81 | + " unit=x_pos.unit,\n", |
| 82 | + " ),\n", |
| 83 | + " \"y\": sc.array(\n", |
| 84 | + " dims=y_pos.dims,\n", |
| 85 | + " values=y_pos.values[inds],\n", |
| 86 | + " unit=y_pos.unit,\n", |
| 87 | + " ),\n", |
| 88 | + " },\n", |
| 89 | + " )\n", |
| 90 | + " return out" |
| 91 | + ] |
| 92 | + }, |
| 93 | + { |
| 94 | + "cell_type": "code", |
| 95 | + "execution_count": null, |
| 96 | + "id": "3", |
| 97 | + "metadata": {}, |
| 98 | + "outputs": [], |
| 99 | + "source": [ |
| 100 | + "def replace_dataset(entry, name, values):\n", |
| 101 | + " attrs = dict(entry[name].attrs)\n", |
| 102 | + " del entry[name]\n", |
| 103 | + " dset = entry.create_dataset(name, data=values)\n", |
| 104 | + " dset.attrs.update(attrs)\n", |
| 105 | + "\n", |
| 106 | + "\n", |
| 107 | + "def mcstas_to_nexus(\n", |
| 108 | + " mcstas_data_file: str,\n", |
| 109 | + " template_nexus_file: str,\n", |
| 110 | + " outfile: str,\n", |
| 111 | + " nevents: float = 1e6,\n", |
| 112 | + " detector_entry_path: str | None = \"entry/instrument/event_mode_detectors/timepix3\",\n", |
| 113 | + " monitor_entry_path: str | None = \"entry/instrument/beam_monitor_3\",\n", |
| 114 | + "):\n", |
| 115 | + " \"\"\"\n", |
| 116 | + " Store the events from a McStas Odin simulation in a NeXus CODA file.\n", |
| 117 | + "\n", |
| 118 | + " Parameters\n", |
| 119 | + " ----------\n", |
| 120 | + " mcstas_data_file:\n", |
| 121 | + " Data file containing simulated McStas events.\n", |
| 122 | + " template_nexus_file:\n", |
| 123 | + " NeXus file containing geometry and instrument info, used as a template.\n", |
| 124 | + " outfile:\n", |
| 125 | + " Output file to be written.\n", |
| 126 | + " nevents:\n", |
| 127 | + " Number of events to have in the output file\n", |
| 128 | + " (events are sampled from the probabilities of the mcstas events).\n", |
| 129 | + " detector_entry_path:\n", |
| 130 | + " Location of the event detector in the nexus tree.\n", |
| 131 | + " monitor_entry_path:\n", |
| 132 | + " Location of the event monitor in the nexus tree.\n", |
| 133 | + " \"\"\"\n", |
| 134 | + " # Find shape of detector panel\n", |
| 135 | + " with h5.File(template_nexus_file, \"r\") as f:\n", |
| 136 | + " shape = f[f\"{detector_entry_path}/x_pixel_offset\"].shape\n", |
| 137 | + " det_numbers = f[f\"{detector_entry_path}/detector_number\"][()]\n", |
| 138 | + "\n", |
| 139 | + " da = load_mcstas_simulation_data(mcstas_data_file, nevents=int(nevents))\n", |
| 140 | + " binned = da.bin(y=shape[0], x=shape[1]).rename_dims(y=\"dim_0\", x=\"dim_1\")\n", |
| 141 | + "\n", |
| 142 | + " toa = binned.bins.coords[\"time_of_arrival\"].bins.concat().value\n", |
| 143 | + "\n", |
| 144 | + " # IMPORTANT! we need to sort the arrays below according to toa,\n", |
| 145 | + " # so that the event_index does not get messed up!\n", |
| 146 | + " event_id = sc.sort(\n", |
| 147 | + " (\n", |
| 148 | + " sc.bins_like(binned, sc.array(dims=binned.dims, values=det_numbers))\n", |
| 149 | + " .bins.concat()\n", |
| 150 | + " .value\n", |
| 151 | + " ),\n", |
| 152 | + " key=toa,\n", |
| 153 | + " )\n", |
| 154 | + "\n", |
| 155 | + " unit = \"ns\"\n", |
| 156 | + " period = (1.0 / sc.scalar(14.0, unit=\"Hz\")).to(unit=unit)\n", |
| 157 | + " start = sc.datetime(\"2024-01-01T12:00:00.000000000\")\n", |
| 158 | + "\n", |
| 159 | + " event_time_zero = sc.sort(\n", |
| 160 | + " (period * (toa.to(unit=\"ns\", copy=False) // period)).to(dtype=int) + start,\n", |
| 161 | + " key=toa,\n", |
| 162 | + " )\n", |
| 163 | + "\n", |
| 164 | + " event_time_offset = sc.sort(toa % period.to(unit=toa.unit), key=toa)\n", |
| 165 | + "\n", |
| 166 | + " event_index = sc.DataArray(\n", |
| 167 | + " data=sc.ones_like(event_time_offset),\n", |
| 168 | + " coords={\"event_time_zero\": event_time_zero},\n", |
| 169 | + " ).group(\"event_time_zero\")\n", |
| 170 | + "\n", |
| 171 | + " event_index = sc.cumsum(event_index.bins.size())\n", |
| 172 | + " event_index.values = np.concatenate([[0], event_index.values[:-1]])\n", |
| 173 | + "\n", |
| 174 | + " # Now edit the template file\n", |
| 175 | + " print(f\"Writing {outfile} file\")\n", |
| 176 | + " shutil.copyfile(template_nexus_file, outfile)\n", |
| 177 | + " f = h5.File(outfile, \"r+\")\n", |
| 178 | + "\n", |
| 179 | + " # Detector data\n", |
| 180 | + " if detector_entry_path is not None:\n", |
| 181 | + " # remove translation offset\n", |
| 182 | + " f[f\"{detector_entry_path}/transformations/translation\"].attrs[\"offset\"] = (\n", |
| 183 | + " np.array([0, 0, 0], dtype=\"float32\")\n", |
| 184 | + " )\n", |
| 185 | + "\n", |
| 186 | + " event_data = f[f\"{detector_entry_path}/timepix3_events\"]\n", |
| 187 | + " replace_dataset(event_data, name=\"event_id\", values=event_id.values)\n", |
| 188 | + " replace_dataset(\n", |
| 189 | + " event_data,\n", |
| 190 | + " name=\"event_time_offset\",\n", |
| 191 | + " values=event_time_offset.to(\n", |
| 192 | + " unit=event_data[\"event_time_offset\"].attrs[\"units\"], copy=False\n", |
| 193 | + " ).values,\n", |
| 194 | + " )\n", |
| 195 | + " replace_dataset(event_data, name=\"event_index\", values=event_index.values)\n", |
| 196 | + " replace_dataset(\n", |
| 197 | + " event_data,\n", |
| 198 | + " name=\"event_time_zero\",\n", |
| 199 | + " values=event_index.coords[\"event_time_zero\"]\n", |
| 200 | + " .to(unit=event_data[\"event_time_zero\"].attrs[\"units\"], copy=False)\n", |
| 201 | + " .values.astype(int),\n", |
| 202 | + " )\n", |
| 203 | + "\n", |
| 204 | + " # Monitor data\n", |
| 205 | + " if monitor_entry_path is not None:\n", |
| 206 | + " monitor_data = f[f\"{monitor_entry_path}/monitor_3_events\"]\n", |
| 207 | + " replace_dataset(\n", |
| 208 | + " monitor_data, name=\"event_id\", values=np.zeros_like(event_id.values)\n", |
| 209 | + " )\n", |
| 210 | + " replace_dataset(\n", |
| 211 | + " monitor_data,\n", |
| 212 | + " name=\"event_time_offset\",\n", |
| 213 | + " values=event_time_offset.to(\n", |
| 214 | + " unit=monitor_data[\"event_time_offset\"].attrs[\"units\"], copy=False\n", |
| 215 | + " ).values,\n", |
| 216 | + " )\n", |
| 217 | + " replace_dataset(monitor_data, name=\"event_index\", values=event_index.values)\n", |
| 218 | + " replace_dataset(\n", |
| 219 | + " monitor_data,\n", |
| 220 | + " name=\"event_time_zero\",\n", |
| 221 | + " values=event_index.coords[\"event_time_zero\"]\n", |
| 222 | + " .to(unit=monitor_data[\"event_time_zero\"].attrs[\"units\"], copy=False)\n", |
| 223 | + " .values.astype(int),\n", |
| 224 | + " )" |
| 225 | + ] |
| 226 | + }, |
| 227 | + { |
| 228 | + "cell_type": "code", |
| 229 | + "execution_count": null, |
| 230 | + "id": "4", |
| 231 | + "metadata": {}, |
| 232 | + "outputs": [], |
| 233 | + "source": [ |
| 234 | + "files = [\n", |
| 235 | + " \"small_mcstas_sample_images.h5\",\n", |
| 236 | + " \"small_mcstas_ob_images.h5\",\n", |
| 237 | + " \"iron_simulation_sample.h5\",\n", |
| 238 | + " \"iron_simulation_ob.h5\",\n", |
| 239 | + "]\n", |
| 240 | + "\n", |
| 241 | + "for file in files:\n", |
| 242 | + " mcstas_to_nexus(\n", |
| 243 | + " mcstas_data_file=file,\n", |
| 244 | + " template_nexus_file=\"977695_00072982.hdf\",\n", |
| 245 | + " outfile=file.replace(\".h5\", \".nxs\"),\n", |
| 246 | + " nevents=1e6,\n", |
| 247 | + " )" |
| 248 | + ] |
| 249 | + } |
| 250 | + ], |
| 251 | + "metadata": { |
| 252 | + "kernelspec": { |
| 253 | + "display_name": "Python 3 (ipykernel)", |
| 254 | + "language": "python", |
| 255 | + "name": "python3" |
| 256 | + }, |
| 257 | + "language_info": { |
| 258 | + "codemirror_mode": { |
| 259 | + "name": "ipython", |
| 260 | + "version": 3 |
| 261 | + }, |
| 262 | + "file_extension": ".py", |
| 263 | + "mimetype": "text/x-python", |
| 264 | + "name": "python", |
| 265 | + "nbconvert_exporter": "python", |
| 266 | + "pygments_lexer": "ipython3", |
| 267 | + "version": "3.12.7" |
| 268 | + } |
| 269 | + }, |
| 270 | + "nbformat": 4, |
| 271 | + "nbformat_minor": 5 |
| 272 | +} |
0 commit comments