Skip to content

Commit 9d8e985

Browse files
authored
Merge pull request #997 from jdb78/feature/release
0.10.2 release
2 parents 2f72303 + f0331b9 commit 9d8e985

File tree

4 files changed

+13
-218
lines changed

4 files changed

+13
-218
lines changed

CHANGELOG.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,6 +1,6 @@
11
# Release Notes
22

3-
## v0.10.2 Multivariate networks (UNRELEASED)
3+
## v0.10.2 Multivariate networks (23/05/2022)
44

55
### Added
66

docs/source/index.rst

Lines changed: 6 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -47,6 +47,12 @@ or to install via conda
4747
4848
conda install pytorch-forecasting pytorch>=1.7 -c pytorch -c conda-forge
4949
50+
To use the MQF2 loss (multivariate quantile loss), also execute
51+
52+
.. code-block::
53+
54+
pip install git+https://github.com/KelvinKan/CP-Flow.git@package-specific-version --no-deps
55+
5056
Vist :ref:`Getting started <getting-started>` to learn more about the package and detailled installation instruction.
5157
The :ref:`Tutorials <tutorials>` section provides guidance on how to use models and implement new ones.
5258

pytorch_forecasting/models/basic_rnn/__init__.py

Lines changed: 0 additions & 211 deletions
This file was deleted.

pytorch_forecasting/models/nhits/__init__.py

Lines changed: 6 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -417,23 +417,23 @@ def plot_interpretation(
417417
plt.Figure: matplotlib figure
418418
"""
419419
if not isinstance(self.loss, MultiLoss): # not multi-target
420-
prediction = self.to_prediction(dict(prediction=output["prediction"][[idx]].detach().cpu()))[0]
420+
prediction = self.to_prediction(dict(prediction=output["prediction"][[idx]].detach()))[0].cpu()
421421
block_forecasts = [
422-
self.to_prediction(dict(prediction=block[[idx]].detach().cpu()))[0]
422+
self.to_prediction(dict(prediction=block[[idx]].detach()))[0].cpu()
423423
for block in output["block_forecasts"]
424424
]
425425
elif isinstance(output["prediction"], (tuple, list)): # multi-target
426426
figs = []
427427
# predictions and block forecasts need to be converted
428-
prediction = [p[[idx]].detach().cpu() for p in output["prediction"]] # select index
428+
prediction = [p[[idx]].detach() for p in output["prediction"]] # select index
429429
prediction = self.to_prediction(dict(prediction=prediction)) # transform to prediction
430-
prediction = [p[0] for p in prediction] # select first and only index
430+
prediction = [p[0].cpu() for p in prediction] # select first and only index
431431

432432
block_forecasts = [
433-
self.to_prediction(dict(prediction=[b[[idx]].detach().cpu() for b in block]))
433+
self.to_prediction(dict(prediction=[b[[idx]].detach() for b in block]))
434434
for block in output["block_forecasts"]
435435
]
436-
block_forecasts = [[b[0] for b in block] for block in block_forecasts]
436+
block_forecasts = [[b[0].cpu() for b in block] for block in block_forecasts]
437437

438438
for i in range(len(self.target_names)):
439439
if ax is not None:

0 commit comments

Comments
 (0)