@@ -257,6 +257,18 @@ class CartModel(core.CoreModel):
257
257
expressed in seconds. Each learning algorithm is free to use this
258
258
parameter at it sees fit. Enabling maximum training duration makes the
259
259
model training non-deterministic. Default: -1.0.
260
+ mhld_oblique_max_num_attributes: For MHLD oblique splits i.e.
261
+ `split_axis=MHLD_OBLIQUE`. Maximum number of attributes in the projection.
262
+ Increasing this value increases the training time. Decreasing this value
263
+ acts as a regularization. The value should be in [2,
264
+ num_numerical_features]. If the value is above the total number of
265
+ numerical features, the value is capped automatically. The value 1 is
266
+ allowed but results in ordinary (non-oblique) splits. Default: None.
267
+ mhld_oblique_sample_attributes: For MHLD oblique splits i.e.
268
+ `split_axis=MHLD_OBLIQUE`. If true, applies the attribute sampling
269
+ controlled by the "num_candidate_attributes" or
270
+ "num_candidate_attributes_ratio" parameters. If false, all the attributes
271
+ are tested. Default: None.
260
272
min_examples: Minimum number of examples in a node. Default: 5.
261
273
missing_value_policy: Method used to handle missing attribute values. -
262
274
`GLOBAL_IMPUTATION`: Missing attribute values are imputed, with the mean
@@ -345,9 +357,11 @@ class CartModel(core.CoreModel):
345
357
split_axis: What structure of split to consider for numerical features. -
346
358
`AXIS_ALIGNED`: Axis aligned splits (i.e. one condition at a time). This
347
359
is the "classical" way to train a tree. Default value. - `SPARSE_OBLIQUE`:
348
- Sparse oblique splits (i.e. splits one a small number of features) from
349
- "Sparse Projection Oblique Random Forests", Tomita et al., 2020. Default:
350
- "AXIS_ALIGNED".
360
+ Sparse oblique splits (i.e. random splits one a small number of features)
361
+ from "Sparse Projection Oblique Random Forests", Tomita et al., 2020. -
362
+ `MHLD_OBLIQUE`: Multi-class Hellinger Linear Discriminant splits from
363
+ "Classification Based on Multivariate Contrast Patterns", Canete-Sifuentes
364
+ et al., 2029 Default: "AXIS_ALIGNED".
351
365
uplift_min_examples_in_treatment: For uplift models only. Minimum number of
352
366
examples per treatment in a node. Default: 5.
353
367
uplift_split_score: For uplift models only. Splitter score i.e. score
@@ -402,6 +416,8 @@ def __init__(
402
416
max_num_nodes : Optional [int ] = None ,
403
417
maximum_model_size_in_memory_in_bytes : Optional [float ] = - 1.0 ,
404
418
maximum_training_duration_seconds : Optional [float ] = - 1.0 ,
419
+ mhld_oblique_max_num_attributes : Optional [int ] = None ,
420
+ mhld_oblique_sample_attributes : Optional [bool ] = None ,
405
421
min_examples : Optional [int ] = 5 ,
406
422
missing_value_policy : Optional [str ] = "GLOBAL_IMPUTATION" ,
407
423
num_candidate_attributes : Optional [int ] = 0 ,
@@ -445,6 +461,8 @@ def __init__(
445
461
maximum_model_size_in_memory_in_bytes
446
462
),
447
463
"maximum_training_duration_seconds" : maximum_training_duration_seconds ,
464
+ "mhld_oblique_max_num_attributes" : mhld_oblique_max_num_attributes ,
465
+ "mhld_oblique_sample_attributes" : mhld_oblique_sample_attributes ,
448
466
"min_examples" : min_examples ,
449
467
"missing_value_policy" : missing_value_policy ,
450
468
"num_candidate_attributes" : num_candidate_attributes ,
@@ -1124,6 +1142,18 @@ class GradientBoostedTreesModel(core.CoreModel):
1124
1142
expressed in seconds. Each learning algorithm is free to use this
1125
1143
parameter at it sees fit. Enabling maximum training duration makes the
1126
1144
model training non-deterministic. Default: -1.0.
1145
+ mhld_oblique_max_num_attributes: For MHLD oblique splits i.e.
1146
+ `split_axis=MHLD_OBLIQUE`. Maximum number of attributes in the projection.
1147
+ Increasing this value increases the training time. Decreasing this value
1148
+ acts as a regularization. The value should be in [2,
1149
+ num_numerical_features]. If the value is above the total number of
1150
+ numerical features, the value is capped automatically. The value 1 is
1151
+ allowed but results in ordinary (non-oblique) splits. Default: None.
1152
+ mhld_oblique_sample_attributes: For MHLD oblique splits i.e.
1153
+ `split_axis=MHLD_OBLIQUE`. If true, applies the attribute sampling
1154
+ controlled by the "num_candidate_attributes" or
1155
+ "num_candidate_attributes_ratio" parameters. If false, all the attributes
1156
+ are tested. Default: None.
1127
1157
min_examples: Minimum number of examples in a node. Default: 5.
1128
1158
missing_value_policy: Method used to handle missing attribute values. -
1129
1159
`GLOBAL_IMPUTATION`: Missing attribute values are imputed, with the mean
@@ -1232,9 +1262,11 @@ class GradientBoostedTreesModel(core.CoreModel):
1232
1262
split_axis: What structure of split to consider for numerical features. -
1233
1263
`AXIS_ALIGNED`: Axis aligned splits (i.e. one condition at a time). This
1234
1264
is the "classical" way to train a tree. Default value. - `SPARSE_OBLIQUE`:
1235
- Sparse oblique splits (i.e. splits one a small number of features) from
1236
- "Sparse Projection Oblique Random Forests", Tomita et al., 2020. Default:
1237
- "AXIS_ALIGNED".
1265
+ Sparse oblique splits (i.e. random splits one a small number of features)
1266
+ from "Sparse Projection Oblique Random Forests", Tomita et al., 2020. -
1267
+ `MHLD_OBLIQUE`: Multi-class Hellinger Linear Discriminant splits from
1268
+ "Classification Based on Multivariate Contrast Patterns", Canete-Sifuentes
1269
+ et al., 2029 Default: "AXIS_ALIGNED".
1238
1270
subsample: Ratio of the dataset (sampling without replacement) used to train
1239
1271
individual trees for the random sampling method. If \\"subsample\\" is set
1240
1272
and if \\"sampling_method\\" is NOT set or set to \\"NONE\\", then
@@ -1324,6 +1356,8 @@ def __init__(
1324
1356
max_num_nodes : Optional [int ] = None ,
1325
1357
maximum_model_size_in_memory_in_bytes : Optional [float ] = - 1.0 ,
1326
1358
maximum_training_duration_seconds : Optional [float ] = - 1.0 ,
1359
+ mhld_oblique_max_num_attributes : Optional [int ] = None ,
1360
+ mhld_oblique_sample_attributes : Optional [bool ] = None ,
1327
1361
min_examples : Optional [int ] = 5 ,
1328
1362
missing_value_policy : Optional [str ] = "GLOBAL_IMPUTATION" ,
1329
1363
num_candidate_attributes : Optional [int ] = - 1 ,
@@ -1397,6 +1431,8 @@ def __init__(
1397
1431
maximum_model_size_in_memory_in_bytes
1398
1432
),
1399
1433
"maximum_training_duration_seconds" : maximum_training_duration_seconds ,
1434
+ "mhld_oblique_max_num_attributes" : mhld_oblique_max_num_attributes ,
1435
+ "mhld_oblique_sample_attributes" : mhld_oblique_sample_attributes ,
1400
1436
"min_examples" : min_examples ,
1401
1437
"missing_value_policy" : missing_value_policy ,
1402
1438
"num_candidate_attributes" : num_candidate_attributes ,
@@ -2213,6 +2249,18 @@ class RandomForestModel(core.CoreModel):
2213
2249
expressed in seconds. Each learning algorithm is free to use this
2214
2250
parameter at it sees fit. Enabling maximum training duration makes the
2215
2251
model training non-deterministic. Default: -1.0.
2252
+ mhld_oblique_max_num_attributes: For MHLD oblique splits i.e.
2253
+ `split_axis=MHLD_OBLIQUE`. Maximum number of attributes in the projection.
2254
+ Increasing this value increases the training time. Decreasing this value
2255
+ acts as a regularization. The value should be in [2,
2256
+ num_numerical_features]. If the value is above the total number of
2257
+ numerical features, the value is capped automatically. The value 1 is
2258
+ allowed but results in ordinary (non-oblique) splits. Default: None.
2259
+ mhld_oblique_sample_attributes: For MHLD oblique splits i.e.
2260
+ `split_axis=MHLD_OBLIQUE`. If true, applies the attribute sampling
2261
+ controlled by the "num_candidate_attributes" or
2262
+ "num_candidate_attributes_ratio" parameters. If false, all the attributes
2263
+ are tested. Default: None.
2216
2264
min_examples: Minimum number of examples in a node. Default: 5.
2217
2265
missing_value_policy: Method used to handle missing attribute values. -
2218
2266
`GLOBAL_IMPUTATION`: Missing attribute values are imputed, with the mean
@@ -2315,9 +2363,11 @@ class RandomForestModel(core.CoreModel):
2315
2363
split_axis: What structure of split to consider for numerical features. -
2316
2364
`AXIS_ALIGNED`: Axis aligned splits (i.e. one condition at a time). This
2317
2365
is the "classical" way to train a tree. Default value. - `SPARSE_OBLIQUE`:
2318
- Sparse oblique splits (i.e. splits one a small number of features) from
2319
- "Sparse Projection Oblique Random Forests", Tomita et al., 2020. Default:
2320
- "AXIS_ALIGNED".
2366
+ Sparse oblique splits (i.e. random splits one a small number of features)
2367
+ from "Sparse Projection Oblique Random Forests", Tomita et al., 2020. -
2368
+ `MHLD_OBLIQUE`: Multi-class Hellinger Linear Discriminant splits from
2369
+ "Classification Based on Multivariate Contrast Patterns", Canete-Sifuentes
2370
+ et al., 2029 Default: "AXIS_ALIGNED".
2321
2371
uplift_min_examples_in_treatment: For uplift models only. Minimum number of
2322
2372
examples per treatment in a node. Default: 5.
2323
2373
uplift_split_score: For uplift models only. Splitter score i.e. score
@@ -2380,6 +2430,8 @@ def __init__(
2380
2430
max_num_nodes : Optional [int ] = None ,
2381
2431
maximum_model_size_in_memory_in_bytes : Optional [float ] = - 1.0 ,
2382
2432
maximum_training_duration_seconds : Optional [float ] = - 1.0 ,
2433
+ mhld_oblique_max_num_attributes : Optional [int ] = None ,
2434
+ mhld_oblique_sample_attributes : Optional [bool ] = None ,
2383
2435
min_examples : Optional [int ] = 5 ,
2384
2436
missing_value_policy : Optional [str ] = "GLOBAL_IMPUTATION" ,
2385
2437
num_candidate_attributes : Optional [int ] = 0 ,
@@ -2433,6 +2485,8 @@ def __init__(
2433
2485
maximum_model_size_in_memory_in_bytes
2434
2486
),
2435
2487
"maximum_training_duration_seconds" : maximum_training_duration_seconds ,
2488
+ "mhld_oblique_max_num_attributes" : mhld_oblique_max_num_attributes ,
2489
+ "mhld_oblique_sample_attributes" : mhld_oblique_sample_attributes ,
2436
2490
"min_examples" : min_examples ,
2437
2491
"missing_value_policy" : missing_value_policy ,
2438
2492
"num_candidate_attributes" : num_candidate_attributes ,
0 commit comments