@@ -289,7 +289,7 @@ class CartModel(core.CoreModel):
289
289
value for Random Forest: `sqrt(number of input attributes)` in case of
290
290
classification and `number_of_input_attributes / 3` in case of regression.
291
291
If `num_candidate_attributes=-1`, all the attributes are tested. Default:
292
- 0 .
292
+ -1 .
293
293
num_candidate_attributes_ratio: Ratio of attributes tested at each node. If
294
294
set, it is equivalent to `num_candidate_attributes =
295
295
number_of_input_features x num_candidate_attributes_ratio`. The possible
@@ -308,7 +308,7 @@ class CartModel(core.CoreModel):
308
308
training. This solution is faster but consumes much more memory than
309
309
IN_NODE. - IN_NODE: The features are sorted just before being used in the
310
310
node. This solution is slow but consumes little amount of memory. .
311
- Default: "PRESORT ".
311
+ Default: "IN_NODE ".
312
312
sparse_oblique_max_num_projections: For sparse oblique splits i.e.
313
313
`split_axis=SPARSE_OBLIQUE`. Maximum number of projections (applied after
314
314
the num_projections_exponent). Oblique splits try out
@@ -420,11 +420,11 @@ def __init__(
420
420
mhld_oblique_sample_attributes : Optional [bool ] = None ,
421
421
min_examples : Optional [int ] = 5 ,
422
422
missing_value_policy : Optional [str ] = "GLOBAL_IMPUTATION" ,
423
- num_candidate_attributes : Optional [int ] = 0 ,
423
+ num_candidate_attributes : Optional [int ] = - 1 ,
424
424
num_candidate_attributes_ratio : Optional [float ] = - 1.0 ,
425
425
pure_serving_model : Optional [bool ] = False ,
426
426
random_seed : Optional [int ] = 123456 ,
427
- sorting_strategy : Optional [str ] = "PRESORT " ,
427
+ sorting_strategy : Optional [str ] = "IN_NODE " ,
428
428
sparse_oblique_max_num_projections : Optional [int ] = None ,
429
429
sparse_oblique_normalization : Optional [str ] = None ,
430
430
sparse_oblique_num_projections_exponent : Optional [float ] = None ,
0 commit comments