|
| 1 | +#! /usr/bin/python |
| 2 | +# -*- coding: utf-8 -*- |
| 3 | + |
| 4 | +import tensorflow as tf |
| 5 | +import tensorlayer as tl |
| 6 | + |
| 7 | +__all__ = [ |
| 8 | + 'activation_module', |
| 9 | + 'conv_module', |
| 10 | + 'dense_module', |
| 11 | +] |
| 12 | + |
| 13 | + |
| 14 | +def activation_module(layer, activation_fn, leaky_relu_alpha=0.2, name=None): |
| 15 | + |
| 16 | + act_name = name + "/activation" if name is not None else "activation" |
| 17 | + |
| 18 | + if activation_fn not in ["ReLU", "ReLU6", "Leaky_ReLU", "PReLU", "PReLU6", "PTReLU6", "CReLU", "ELU", "SELU", |
| 19 | + "tanh", "sigmoid", "softmax", None]: |
| 20 | + raise Exception("Unknown 'activation_fn': %s" % activation_fn) |
| 21 | + |
| 22 | + elif activation_fn == "ReLU": |
| 23 | + layer = tl.layers.LambdaLayer(prev_layer=layer, fn=tf.nn.relu, name=act_name) |
| 24 | + |
| 25 | + elif activation_fn == "ReLU6": |
| 26 | + layer = tl.layers.LambdaLayer(prev_layer=layer, fn=tf.nn.relu6, name=act_name) |
| 27 | + |
| 28 | + elif activation_fn == "Leaky_ReLU": |
| 29 | + layer = tl.layers.LambdaLayer( |
| 30 | + prev_layer=layer, fn=tf.nn.leaky_relu, fn_args={'alpha': leaky_relu_alpha}, name=act_name |
| 31 | + ) |
| 32 | + |
| 33 | + elif activation_fn == "PReLU": |
| 34 | + layer = tl.layers.PReluLayer(prev_layer=layer, channel_shared=False, name=act_name) |
| 35 | + |
| 36 | + elif activation_fn == "PReLU6": |
| 37 | + layer = tl.layers.PRelu6Layer(prev_layer=layer, channel_shared=False, name=act_name) |
| 38 | + |
| 39 | + elif activation_fn == "PTReLU6": |
| 40 | + layer = tl.layers.PTRelu6Layer(prev_layer=layer, channel_shared=False, name=act_name) |
| 41 | + |
| 42 | + elif activation_fn == "CReLU": |
| 43 | + layer = tl.layers.LambdaLayer(prev_layer=layer, fn=tf.nn.crelu, name=act_name) |
| 44 | + |
| 45 | + elif activation_fn == "ELU": |
| 46 | + layer = tl.layers.LambdaLayer(prev_layer=layer, fn=tf.nn.elu, name=act_name) |
| 47 | + |
| 48 | + elif activation_fn == "SELU": |
| 49 | + layer = tl.layers.LambdaLayer(prev_layer=layer, fn=tf.nn.selu, name=act_name) |
| 50 | + |
| 51 | + elif activation_fn == "tanh": |
| 52 | + layer = tl.layers.LambdaLayer(prev_layer=layer, fn=tf.nn.tanh, name=act_name) |
| 53 | + |
| 54 | + elif activation_fn == "sigmoid": |
| 55 | + layer = tl.layers.LambdaLayer(prev_layer=layer, fn=tf.nn.sigmoid, name=act_name) |
| 56 | + |
| 57 | + elif activation_fn == "softmax": |
| 58 | + layer = tl.layers.LambdaLayer(prev_layer=layer, fn=tf.nn.softmax, name=act_name) |
| 59 | + |
| 60 | + return layer |
| 61 | + |
| 62 | + |
| 63 | +def conv_module( |
| 64 | + prev_layer, n_out_channel, filter_size, strides, padding, is_train=True, use_batchnorm=True, activation_fn=None, |
| 65 | + conv_init=tl.initializers.random_uniform(), |
| 66 | + batch_norm_init=tl.initializers.truncated_normal(mean=1., |
| 67 | + stddev=0.02), bias_init=tf.zeros_initializer(), name=None |
| 68 | +): |
| 69 | + |
| 70 | + if activation_fn not in ["ReLU", "ReLU6", "Leaky_ReLU", "PReLU", "PReLU6", "PTReLU6", "CReLU", "ELU", "SELU", |
| 71 | + "tanh", "sigmoid", "softmax", None]: |
| 72 | + raise Exception("Unknown 'activation_fn': %s" % activation_fn) |
| 73 | + |
| 74 | + conv_name = 'conv2d' if name is None else name |
| 75 | + bn_name = 'batch_norm' if name is None else name + '/BatchNorm' |
| 76 | + |
| 77 | + layer = tl.layers.Conv2d( |
| 78 | + prev_layer, |
| 79 | + n_filter=n_out_channel, |
| 80 | + filter_size=filter_size, |
| 81 | + strides=strides, |
| 82 | + padding=padding, |
| 83 | + act=None, |
| 84 | + W_init=conv_init, |
| 85 | + b_init=None if use_batchnorm else bias_init, # Not useful as the convolutions are batch normalized |
| 86 | + name=conv_name |
| 87 | + ) |
| 88 | + |
| 89 | + if use_batchnorm: |
| 90 | + |
| 91 | + layer = tl.layers.BatchNormLayer(layer, act=None, is_train=is_train, gamma_init=batch_norm_init, name=bn_name) |
| 92 | + |
| 93 | + logits = layer.outputs |
| 94 | + |
| 95 | + layer = activation_module(layer, activation_fn, name=conv_name) |
| 96 | + |
| 97 | + return layer, logits |
| 98 | + |
| 99 | + |
| 100 | +def dense_module( |
| 101 | + prev_layer, n_units, is_train, use_batchnorm=True, activation_fn=None, |
| 102 | + dense_init=tl.initializers.random_uniform(), |
| 103 | + batch_norm_init=tl.initializers.truncated_normal(mean=1., |
| 104 | + stddev=0.02), bias_init=tf.zeros_initializer(), name=None |
| 105 | +): |
| 106 | + |
| 107 | + if activation_fn not in ["ReLU", "ReLU6", "Leaky_ReLU", "PReLU", "PReLU6", "PTReLU6", "CReLU", "ELU", "SELU", |
| 108 | + "tanh", "sigmoid", "softmax", None]: |
| 109 | + raise Exception("Unknown 'activation_fn': %s" % activation_fn) |
| 110 | + |
| 111 | + # Flatten: Conv to FC |
| 112 | + if prev_layer.outputs.get_shape().__len__() != 2: # The input dimension must be rank 2 |
| 113 | + layer = tl.layers.FlattenLayer(prev_layer, name='flatten') |
| 114 | + |
| 115 | + else: |
| 116 | + layer = prev_layer |
| 117 | + |
| 118 | + layer = tl.layers.DenseLayer( |
| 119 | + layer, |
| 120 | + n_units=n_units, |
| 121 | + act=None, |
| 122 | + W_init=dense_init, |
| 123 | + b_init=None if use_batchnorm else bias_init, # Not useful as the convolutions are batch normalized |
| 124 | + name='dense' if name is None else name |
| 125 | + ) |
| 126 | + |
| 127 | + if use_batchnorm: |
| 128 | + layer = tl.layers.BatchNormLayer( |
| 129 | + layer, act=None, is_train=is_train, gamma_init=batch_norm_init, name='batch_norm' |
| 130 | + ) |
| 131 | + |
| 132 | + logits = layer.outputs |
| 133 | + |
| 134 | + layer = activation_module(layer, activation_fn) |
| 135 | + |
| 136 | + return layer, logits |
0 commit comments