|
4 | 4 | BayesianRegression
|
5 | 5 | ```
|
6 | 6 |
|
| 7 | +## Bayesian Algorithms |
| 8 | + |
| 9 | +```@docs |
| 10 | +BayesianAlgorithm |
| 11 | +MCMC |
| 12 | +VI |
| 13 | +``` |
| 14 | + |
7 | 15 | ## Linear Regression
|
8 | 16 |
|
9 | 17 | ### Linear Regression with User Specific Gaussian Prior
|
10 | 18 | ```@docs
|
11 |
| -fit(formula::FormulaTerm, data::DataFrame, modelClass::LinearRegression, prior::Prior_Gauss, alpha_prior_mean::Float64, beta_prior_mean::Vector{Float64}, sim_size::Int64 = 1000) |
12 |
| -fit(formula::FormulaTerm, data::DataFrame, modelClass::LinearRegression, prior::Prior_Gauss, alpha_prior_mean::Float64, alpha_prior_sd::Float64, beta_prior_mean::Vector{Float64}, beta_prior_sd::Vector{Float64}, sim_size::Int64 = 1000) |
| 19 | +fit(formula::FormulaTerm, data::DataFrame, modelClass::LinearRegression, prior::Prior_Gauss, alpha_prior_mean::Float64, beta_prior_mean::Vector{Float64}, algorithm::BayesianAlgorithm = MCMC()) |
| 20 | +fit(formula::FormulaTerm, data::DataFrame, modelClass::LinearRegression, prior::Prior_Gauss, alpha_prior_mean::Float64, alpha_prior_sd::Float64, beta_prior_mean::Vector{Float64}, beta_prior_sd::Vector{Float64}, algorithm::BayesianAlgorithm = MCMC()) |
13 | 21 | ```
|
14 | 22 |
|
15 | 23 | ### Linear Regression with Ridge Prior
|
16 | 24 | ```@docs
|
17 |
| -fit(formula::FormulaTerm, data::DataFrame, modelClass::LinearRegression, prior::Prior_Ridge, h::Float64 = 0.01, sim_size::Int64 = 1000) |
| 25 | +fit(formula::FormulaTerm, data::DataFrame, modelClass::LinearRegression, prior::Prior_Ridge, algorithm::BayesianAlgorithm = MCMC(), h::Float64 = 0.01) |
18 | 26 | ```
|
19 | 27 |
|
20 | 28 | ### Linear Regression with Laplace Prior
|
21 | 29 | ```@docs
|
22 |
| -fit(formula::FormulaTerm, data::DataFrame, modelClass::LinearRegression, prior::Prior_Laplace, h::Float64 = 0.01, sim_size::Int64 = 1000) |
| 30 | +fit(formula::FormulaTerm, data::DataFrame, modelClass::LinearRegression, prior::Prior_Laplace, algorithm::BayesianAlgorithm = MCMC(), h::Float64 = 0.01) |
23 | 31 | ```
|
24 | 32 | ### Linear Regression with Cauchy Prior
|
25 | 33 | ```@docs
|
26 |
| -fit(formula::FormulaTerm, data::DataFrame, modelClass::LinearRegression, prior::Prior_Cauchy, sim_size::Int64 = 1000) |
| 34 | +fit(formula::FormulaTerm, data::DataFrame, modelClass::LinearRegression, prior::Prior_Cauchy, algorithm::BayesianAlgorithm = MCMC()) |
27 | 35 | ```
|
28 | 36 | ### Linear Regression with T-distributed Prior
|
29 | 37 | ```@docs
|
30 |
| -fit(formula::FormulaTerm, data::DataFrame, modelClass::LinearRegression, prior::Prior_TDist, h::Float64 = 2.0, sim_size::Int64 = 1000) |
| 38 | +fit(formula::FormulaTerm, data::DataFrame, modelClass::LinearRegression, prior::Prior_TDist, algorithm::BayesianAlgorithm = MCMC(), h::Float64 = 2.0) |
31 | 39 | ```
|
32 | 40 | ### Linear Regression with Horse Shoe Prior
|
33 | 41 | ```@docs
|
34 |
| -fit(formula::FormulaTerm,data::DataFrame,modelClass::LinearRegression,prior::Prior_HorseShoe,sim_size::Int64 = 1000) |
| 42 | +fit(formula::FormulaTerm,data::DataFrame,modelClass::LinearRegression,prior::Prior_HorseShoe,algorithm::BayesianAlgorithm = MCMC()) |
35 | 43 | ```
|
36 | 44 |
|
37 | 45 | ## Logistic Regression
|
|
0 commit comments