Skip to content

AngxiaoLu123/dimension-reduction-plots

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

🔬 Flow Cytometry Dimensionality Reduction (UMAP / t-SNE)

This project provides a Jupyter notebook for dimensionality reduction and visualization of flow cytometry .fcs files using UMAP and t-SNE. The notebook reduces high-dimensional single-cell data to 2D for visual exploration and identifies dominant marker expression per cell.


🧰 Prerequisites

  • Python 3.10+
  • Visual Studio Code with the Jupyter extension
  • Virtual environment (recommended for dependency isolation)

🐍 Installing Python 3.10+

🔹 Windows

  1. Go to the official download page: https://www.python.org/downloads/windows/
  2. Download the latest Python 3.10 or above Windows installer.
  3. Run the installer:
    • ✅ Check "Add Python to PATH"
    • ✅ Choose "Customize installation" if you want to enable pip or install for all users
  4. Confirm installation:
    python --version

🛠️ Setup Instructions

  1. Clone the repository

    git clone https://github.com/AngxiaoLu123/dimension-reduction-plots.git
    cd dimension-reduction-plots
  2. Create and activate a virtual environment

    Windows

    python -m venv venv
    venv\Scripts\activate
  3. Install dependencies

    pip install -r requirements.txt

🧪 Running the Notebook in VS Code

Open the project folder in Visual Studio Code.

Install the Jupyter extension (if not already installed).

Open the .ipynb notebook file (e.g., dimension_reduction.ipynb) in the notebooks folder.

In the top-right corner of the notebook, select the Python virtual environment kernel.

Run the notebook cells step by step.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published