This project provides a Jupyter notebook for dimensionality reduction and visualization of flow cytometry .fcs
files using UMAP and t-SNE. The notebook reduces high-dimensional single-cell data to 2D for visual exploration and identifies dominant marker expression per cell.
- Python 3.10+
- Visual Studio Code with the Jupyter extension
- Virtual environment (recommended for dependency isolation)
- Go to the official download page: https://www.python.org/downloads/windows/
- Download the latest Python 3.10 or above Windows installer.
- Run the installer:
- ✅ Check "Add Python to PATH"
- ✅ Choose "Customize installation" if you want to enable
pip
or install for all users
- Confirm installation:
python --version
-
Clone the repository
git clone https://github.com/AngxiaoLu123/dimension-reduction-plots.git cd dimension-reduction-plots
-
Create and activate a virtual environment
Windows
python -m venv venv venv\Scripts\activate
-
Install dependencies
pip install -r requirements.txt
Open the project folder in Visual Studio Code.
Install the Jupyter extension (if not already installed).
Open the .ipynb notebook file (e.g., dimension_reduction.ipynb) in the notebooks folder.
In the top-right corner of the notebook, select the Python virtual environment kernel.
Run the notebook cells step by step.