Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
106 changes: 106 additions & 0 deletions mlx_embeddings/colvision_processor.py
Copy link
Owner

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

For now let's merge this into colidefics3.py

Original file line number Diff line number Diff line change
@@ -0,0 +1,106 @@
from abc import ABC, abstractmethod
from typing import List, Optional, Union

import mlx.core as mx
from PIL import Image
from transformers import BatchEncoding, BatchFeature, ProcessorMixin


class BaseColVisionProcessor(ABC, ProcessorMixin):
"""
Base class for visual retriever processors.
Ported from PyTorch to MLX from:
- https://github.com/illuin-tech/colpali/blob/main/colpali_engine/utils/processing_utils.py

Removed the methods: get_topk_plaid, create_plaid_index, get_n_patches
"""

@abstractmethod
def process_images(
self,
images: List[Image.Image],
) -> Union[BatchFeature, BatchEncoding]:
pass

@abstractmethod
def process_queries(
self,
queries: List[str],
max_length: int = 50,
suffix: Optional[str] = None,
) -> Union[BatchFeature, BatchEncoding]:
pass

@abstractmethod
def score(
self,
qs: List[mx.array],
ps: List[mx.array],
**kwargs,
) -> mx.array:
pass

@staticmethod
def score_single_vector(
qs: List[mx.array],
ps: List[mx.array],
) -> mx.array:
"""
Compute the dot product score for the given single-vector query and passage embeddings using MLX.
"""
if len(qs) == 0:
raise ValueError("No queries provided")
if len(ps) == 0:
raise ValueError("No passages provided")

qs_stacked = mx.stack(qs)
ps_stacked = mx.stack(ps)

scores = mx.einsum("bd,cd->bc", qs_stacked, ps_stacked)
assert scores.shape[0] == len(qs), f"Expected {len(qs)} scores, got {scores.shape[0]}"
return scores.astype(mx.float32)

@staticmethod
def score_multi_vector(
qs: Union[mx.array, List[mx.array]],
ps: Union[mx.array, List[mx.array]],
batch_size: int = 128,
) -> mx.array:
"""
Compute the late-interaction/MaxSim score (ColBERT-like) for the given multi-vector
query embeddings (`qs`) and passage embeddings (`ps`) using MLX.
"""
if len(qs) == 0:
raise ValueError("No queries provided")
if len(ps) == 0:
raise ValueError("No passages provided")

def pad_to_max(arrays):
max_len = max(a.shape[0] for a in arrays)
emb_dim = arrays[0].shape[1]
padded = []
for a in arrays:
pad_width = max_len - a.shape[0]
if pad_width > 0:
pad = mx.zeros((pad_width, emb_dim), dtype=a.dtype)
padded.append(mx.concatenate([a, pad], axis=0))
else:
padded.append(a)
return mx.stack(padded)

scores_list = []
for i in range(0, len(qs), batch_size):
qs_batch = pad_to_max(qs[i : i + batch_size])
scores_batch = []
for j in range(0, len(ps), batch_size):
ps_batch = pad_to_max(ps[j : j + batch_size])
# einsum: (b,n,d),(c,s,d)->(b,c,n,s)
sim = mx.einsum("bnd,csd->bcns", qs_batch, ps_batch)
maxsim = mx.max(sim, axis=3) # max over s
summed = mx.sum(maxsim, axis=2) # sum over n
scores_batch.append(summed)
scores_batch = mx.concatenate(scores_batch, axis=1)
scores_list.append(scores_batch)
scores = mx.concatenate(scores_list, axis=0)
assert scores.shape[0] == len(qs), f"Expected {len(qs)} scores, got {scores.shape[0]}"
return scores.astype(mx.float32)
Loading