Skip to content

DeepTrackAI/biosr_dataset

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

32 Commits
 
 
 
 
 
 

Repository files navigation

BioSR Dataset (biosr_dataset)

Overview

This DeepTrackAI repository provides a preprocessed part of the BioSR dataset, available from figshare (DOI: 10.6084/m9.figshare.13264793.v9) and originally published by Chang Qiao et al., Nature Methods, 2021.

The original dataset consists of paired low-resolution (LR) and high-resolution (HR) fluorescence microscopy images for training and benchmarking super-resolution reconstruction methods, covering four biology structures (Clatrin Coated Pits, Endoplasmatic Reticulum, Microtubules, F-actin), nine signal levels (15-600 average photon count), and two upscaling-factors (linear SIM and non-linear SIM).

This repo only includes the Microtubules folder and the images in this repository have been cropped into 128 × 128 pixel patches, saved as 32-bit grayscale TIF files and organized into training/validate/test splits to be directly usable in deep learning workflows, while preserving the original content and licensing terms.

Summary

  • Number of Image Pairs:
    • Training: 41,040 pairs
    • Validation: 2,160 pairs
    • Test: 150 HR images × 9 LR signal levels (1,350 LR images total). Each subfolder corresponds to a different signal-to-noise level, reflecting increasing average photon counts (15–600 photons).
  • Image Size: 128 × 128 pixels
  • Format: 32-bit grayscale TIF images

Original Source

If you use this dataset, please follow the licensing requirements and provide proper attribution to the original authors.


Dataset Structure

/biosr_dataset
└── BioSR/
    └── Microtubules/
        ├── training_wf/      # Low-resolution training images (TIF)
        │   ├── 00000001.tif
        │   ├── 00000002.tif
        │   └── ...
        ├── training_gt/      # High-resolution training images (TIF)
        │   ├── 00000001.tif
        │   ├── 00000002.tif
        │   └── ...
        ├── validate_wf/      # Low-resolution validation images (TIF)
        │   ├── 00000001.tif
        │   ├── 00000002.tif
        │   └── ...
        ├── validate_gt/      # High-resolution validation images (TIF)
        │   ├── 00000001.tif
        │   ├── 00000002.tif
        │   └── ...
        ├── test_wf/          # Low-resolution test images, 9 signal levels
        │   ├── level_01/     # Lowest photon count (~15), lowest SNR
        │   │   ├── 001.tif
        │   │   ├── 002.tif
        │   │   └── ...
        │   ├── level_02/
        │   │   ├── 001.tif
        │   │   ├── 002.tif
        │   │   └── ...
        │   ├── ...
        │   └── level_09/     # Highest photon count (~600), highest SNR
        └── test_gt/          # High-resolution test images (TIF)
            ├── 001.tif
            ├── 002.tif
            └── ...

How to Access the Data

Clone the Repository

git clone https://github.com/DeepTrackAI/biosr_dataset
cd biosr_dataset

Attribution

This replication dataset is based on the original BIOSR dataset. When using this replication, please cite both the dataset and the original paper.

Cite the dataset:

Qiao, Chang; Li, Di. BioSR: a biological image dataset for super-resolution microscopy. (2020) https://doi.org/10.6084/m9.figshare.13264793.v9

@article{Qiao2020,
author = "Chang Qiao and Di Li",
title = "{BioSR: a biological image dataset for super-resolution microscopy}",
year = "2020",
month = "11",
url = "https://figshare.com/articles/dataset/BioSR/13264793",
doi = "10.6084/m9.figshare.13264793.v9"
}

Cite the original paper:

Qiao C, Li Y, Qu J, et al. Evaluation and development of deep neural networks for image super-resolution in optical microscopy. Nature Methods, 18: 194–202 (2021).
https://doi.org/10.1038/s41592-020-01048-5

@article{qiao2021biosr,
  title={Evaluation and development of deep neural networks for image super-resolution in optical microscopy},
  author={Qiao, Chang and Li, Yuxiang and Qu, Junle and others},
  journal={Nature Methods},
  volume={18},
  pages={194--202},
  year={2021},
  publisher={Nature Publishing Group},
  doi={10.1038/s41592-020-01048-5}
}

License

This dataset is shared under the Creative Commons Attribution 4.0 International (CC BY 4.0) License, following the original licensing terms.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •