Skip to content

Hermann-web/lidar2bev

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Bird’s Eye View (BEV) LiDAR Visualization

This project processes raw LiDAR data and visualizes it as a Bird's Eye View (BEV) RGB image using basic preprocessing and point cloud filtering.

Features

  • Loads .bin LiDAR files
  • Removes irrelevant points based on 3D spatial boundaries
  • Projects the LiDAR data into a 2D BEV feature map
  • Saves and displays the resulting RGB BEV image

Directory Structure

project/
├── data/
│   └── velodyne/
│       └── 0000000000.bin
├── utils.py
├── config.py
├── main.py
└── output.png

Dependencies

Ensure you have the following Python packages installed:

pip install numpy opencv-python

File Descriptions

  • main.py: Main script to generate and display the BEV image.
  • utils.py: Contains helper functions for loading and processing LiDAR data.
  • config.py: Configuration for BEV grid size, discretization, and 3D boundary limits.

Running the Script

Place a LiDAR .bin file in the data/velodyne/ directory. Then run:

python main.py

This will:

  1. Load and preprocess the LiDAR data.
  2. Generate a BEV RGB image.
  3. Save it as output.png.
  4. Display it using OpenCV.

Configuration

Adjust config.py for:

  • BEV_WIDTH: Width of the BEV map.
  • DISCRETIZATION: Grid resolution.
  • boundary: 3D spatial limits for filtering points.

Acknowledgements

This project draws inspiration from and acknowledges the following works:

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages