Skip to content

Intelligent-Systems-Research-Group/RL4MicrostructureEvolution

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

13 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

RL4MicrostructureEvolution.png

RL4MicrostructureEvolution

Reinforcement Learning Environments for Structure Guided Process Optimization Tasks

Prerequisites

  • Download compiled microstructure-path simulation (uniax_simulator_for_microstructure_evolution_40tasks) and material model from https://fordatis.fraunhofer.de/handle/fordatis/201 and put to /msevolution_env/assets/sim
  • Intel Fortran environment to run the simulations and proper environment variables (eg. export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/home/<username>/intel/compilers_and_libraries_2019.3.199/linux/compiler/lib/intel64_lin:/home/<username>/intel/compilers_and_libraries_2019.3.199/linux/mkl/lib/intel64_lin)

Install and run microstructure-evolution environments

  • cd RL4MicrostructureEvolution
  • pip install .
  • cd msevolution_env/examples
  • python sg_random_agent.py for single-goal version or python meg_random_agent.py for multi-equivalent goal version

Cite

@article{dornheim2022deep,
  title={Deep reinforcement learning methods for structure-guided processing path optimization},
  author={Dornheim, Johannes and Morand, Lukas and Zeitvogel, Samuel and Iraki, Tarek and Link, Norbert and Helm, Dirk},
  journal={Journal of Intelligent Manufacturing},
  volume={33},
  number={1},
  pages={333--352},
  year={2022},
  publisher={Springer}
}

About

Reinforcement Learning Environments for Structure Guided Process Optimization Tasks

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages