Reinforcement Learning Environments for Structure Guided Process Optimization Tasks
- Download compiled microstructure-path simulation (uniax_simulator_for_microstructure_evolution_40tasks) and material model from https://fordatis.fraunhofer.de/handle/fordatis/201 and put to /msevolution_env/assets/sim
- Intel Fortran environment to run the simulations and proper environment variables (eg.
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/home/<username>/intel/compilers_and_libraries_2019.3.199/linux/compiler/lib/intel64_lin:/home/<username>/intel/compilers_and_libraries_2019.3.199/linux/mkl/lib/intel64_lin
)
cd RL4MicrostructureEvolution
pip install .
cd msevolution_env/examples
python sg_random_agent.py
for single-goal version orpython meg_random_agent.py
for multi-equivalent goal version
@article{dornheim2022deep,
title={Deep reinforcement learning methods for structure-guided processing path optimization},
author={Dornheim, Johannes and Morand, Lukas and Zeitvogel, Samuel and Iraki, Tarek and Link, Norbert and Helm, Dirk},
journal={Journal of Intelligent Manufacturing},
volume={33},
number={1},
pages={333--352},
year={2022},
publisher={Springer}
}