Skip to content

JuliaSpacePhysics/MinimumVarianceAnalysis.jl

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

MinimumVarianceAnalysis

Build Status Coverage

The main purpose of minimum or maximum variance analysis (MVA) is to find an estimator for the direction normal $\hat{𝐧}$ to an approximately one-dimensional structure, by minimisation of

$$ σ^2=\frac{1}{M} ∑_{m=1}^M | (𝐁^{(m)}-⟨𝐁⟩) · \hat{𝐧}|^2. $$

See SPEDAS for more details. See SPEDAS validation for comparison with a Python implementation (pyspedas).

Installation

using Pkg
Pkg.add("MinimumVarianceAnalysis")

Reference

Roadmap

  • Minimum Variance Analysis on Mass Flux (MVAρv)
  • Maximum Variance Analysis on Electric Field (MVAE)
  • Application to 2-D Structures

Notes

  • Anisotropic fluctuations have been shown to lead to larger errors in normal determinations.

About

minimum or maximum variance analysis (MVA)

Topics

Resources

License

Stars

Watchers

Forks

Contributors 3

  •  
  •  
  •  

Languages