Leverage IBM Quantum's cutting-edge Qiskit Transpiler Service and AI-powered transpiler passes to achieve superior circuit optimization through reinforcement learning algorithms.
- π§ AI-Powered Optimization: Advanced routing and circuit synthesis using reinforcement learning algorithms
- β‘ Local & Remote Modes: Run AI passes locally or leverage cloud resources
- βοΈ Cloud-ready: Harness IBM Quantum's cloud infrastructure for intensive computations
- π― Drop-in Replacement: Seamlessly integrate with existing Qiskit workflows
- π Superior Performance: Our AI models typically outperform traditional heuristic algorithms. Read the benchmark
Note: The cloud transpilation capabilities are only available for IBM Quantum Premium Plan users. The local mode is available to any user and is enabled by default if the local mode dependencies are installed. Currently in beta release.
pip install qiskit-ibm-transpiler
For running AI-powered transpiler passes locally:
pip install qiskit-ibm-transpiler[ai-local-mode]
The package automatically authenticates using your IBM Quantum Platform credentials aligned with how Qiskit Runtime manages it:
- Environment variable:
QISKIT_IBM_TOKEN
- Configuration file:
~/.qiskit/qiskit-ibm.json
(section:default-ibm-quantum
)
For a comprehensive introduction to the qiskit-ibm-transpiler library, start here:
- π AI Transpiling Tutorial - Complete walkthrough of the library's features and capabilities
- π Examples Directory - Collection of Jupyter notebooks demonstrating specific use cases:
- AI Transpiler Demo - Basic transpilation examples
- AI Clifford Synthesis Demo - Clifford circuit optimization
- AI Linear Function Synthesis Demo - Linear function synthesis
- AI Permutation Synthesis Demo - Permutation circuit synthesis
- AI Large Circuit Speed Test - Performance benchmarking
These notebooks provide hands-on examples and detailed explanations to help you get the most out of the AI-powered transpilation capabilities.
AI Routing Pass
The AIRouting
pass provides intelligent layout selection and circuit routing using reinforcement learning:
from qiskit.transpiler import PassManager
from qiskit_ibm_transpiler.ai.routing import AIRouting
from qiskit.circuit.library import EfficientSU2
# Local mode execution
ai_routing = PassManager([
AIRouting(
backend_name="ibm_torino",
optimization_level=3,
layout_mode="optimize",
local_mode=True # Run locally for faster execution
)
])
circuit = EfficientSU2(101, entanglement="circular", reps=1).decompose()
routed_circuit = ai_routing.run(circuit)
Parameter | Options | Description |
---|---|---|
optimization_level |
1, 2, 3 | Computational effort (higher = better results, longer time) |
layout_mode |
optimize |
Best for general circuits (default) |
improve |
Uses existing layout as starting point | |
keep |
Respects previous layout selection | |
local_mode |
True/False |
Run locally or on cloud |
AI Circuit Synthesis Passes
Optimize specific circuit blocks using AI-powered synthesis for superior gate count reduction:
from qiskit.transpiler import PassManager
from qiskit_ibm_transpiler.ai.routing import AIRouting
from qiskit_ibm_transpiler.ai.synthesis import (
AILinearFunctionSynthesis, AIPauliNetworkSynthesis
)
from qiskit_ibm_transpiler.ai.collection import (
CollectLinearFunctions, CollectPauliNetworks
)
from qiskit.circuit.library import EfficientSU2
# Complete AI-powered transpilation pipeline
ai_pm = PassManager([
AIRouting(backend_name="ibm_torino", optimization_level=3, layout_mode="optimize"),
# Collect and synthesize linear functions
CollectLinearFunctions(),
AILinearFunctionSynthesis(backend_name="ibm_torino", local_mode=True),
# Collect and synthesize Pauli networks
CollectPauliNetworks(),
AIPauliNetworkSynthesis(backend_name="ibm_torino", local_mode=True),
])
circuit = EfficientSU2(10, entanglement="full", reps=1).decompose()
optimized_circuit = ai_pm.run(circuit)
Available Synthesis Passes
Pass | Circuit Type | Max Qubits | Local Mode |
---|---|---|---|
AICliffordSynthesis |
H, S, CX gates | 9 | β |
AILinearFunctionSynthesis |
CX, SWAP gates | 9 | β |
AIPermutationSynthesis |
SWAP gates | 65, 33, 27 | β |
AIPauliNetworkSynthesis |
H, S, SX, CX, RX, RY, RZ | 6 | β |
Note: The Qiskit Transpiler Service is currently being migrated. We recommend using local mode instead.
from qiskit.circuit.library import EfficientSU2
from qiskit_ibm_transpiler.transpiler_service import TranspilerService
# Create your circuit
circuit = EfficientSU2(101, entanglement="circular", reps=1).decompose()
# Enable AI optimization for superior results
service = TranspilerService(
backend_name="ibm_torino",
ai="auto", # Service decides: AI passes vs standard Qiskit
optimization_level=3,
)
optimized_circuit = service.run(circuit)
Service Configuration Options:
Parameter | Values | Description |
---|---|---|
ai |
"true" , "false" , "auto" |
AI transpilation mode |
optimization_level |
1 , 2 , 3 |
Optimization intensity |
backend_name |
Backend string | Target quantum device |
coupling_map |
List of tuples | Custom connectivity |
Service Limits: Max 1M two-qubit gates per job, 30-minute transpilation timeout, 20-minute result retrieval window.
The qiskit-ibm-transpiler allows you to configure a hybrid pass manager that automatically combines the best of Qiskit's heuristic and AI-powered transpiler passes. This feature behaves similarly to the Qiskit generate_pass_manager
method:
from qiskit_ibm_transpiler import generate_ai_pass_manager
from qiskit.circuit.library import efficient_su2
from qiskit_ibm_runtime import QiskitRuntimeService
backend = QiskitRuntimeService().backend("ibm_torino")
torino_coupling_map = backend.coupling_map
su2_circuit = efficient_su2(101, entanglement="circular", reps=1)
ai_hybrid_pass_manager = generate_ai_pass_manager(
coupling_map=torino_coupling_map,
ai_optimization_level=3,
optimization_level=3,
ai_layout_mode="optimize",
)
ai_su2_transpiled_circuit = ai_hybrid_pass_manager.run(su2_circuit)
Configuration Options:
coupling_map
: Specifies which coupling map to use for the transpilationai_optimization_level
: Level of optimization (1-3) for AI components of the PassManageroptimization_level
: Optimization level for heuristic components of the PassManagerai_layout_mode
: How the AI routing handles layout (see AI routing pass section for options)
Thread Pool Configuration:
# Method 1: Per-pass configuration
AILinearFunctionSynthesis(backend_name="ibm_torino", max_threads=20)
# Method 2: Global environment variable
import os
os.environ["AI_TRANSPILER_MAX_THREADS"] = "20"
Smart Replacement:
- Default: Only replaces if synthesis improves gate count
- Force replacement:
replace_only_if_better=False
Note: Synthesis passes respect device coupling maps and work seamlessly after routing passes.
Customize logging levels for debugging and monitoring:
import logging
# Available levels: NOTSET, DEBUG, INFO, WARNING, ERROR, CRITICAL
logging.getLogger("qiskit_ibm_transpiler").setLevel(logging.INFO)
- π Official Documentation
- π§ AI Transpiler Passes Guide
- π― IBM Quantum Platform
- π‘ Give us feedback
If you use this library in your research, please cite:
@misc{kremer2024practical,
title={Practical and efficient quantum circuit synthesis and transpiling with Reinforcement Learning},
author={David Kremer and Victor Villar and Hanhee Paik and Ivan Duran and Ismael Faro and Juan Cruz-Benito},
year={2024},
eprint={2405.13196},
archivePrefix={arXiv},
primaryClass={quant-ph}
}