- 
                Notifications
    
You must be signed in to change notification settings  - Fork 112
 
[AI generated] AIMIGRAPHX-236 Updated Resize op to support linear mode #4382
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
base: develop
Are you sure you want to change the base?
Changes from 1 commit
fe93b3d
              2e153d2
              b49828d
              08cf896
              b26f944
              3e0cae1
              File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
| Original file line number | Diff line number | Diff line change | 
|---|---|---|
| 
          
            
          
           | 
    @@ -150,8 +150,9 @@ struct resize | |
| { | ||
| check_shapes{inputs, *this, true}.has(1, 2); | ||
| 
     | 
||
| if(mode != "nearest") | ||
| MIGRAPHX_THROW("RESIZE: Only Nearest mode is supported"); | ||
| // Allow nearest and linear; still reject others | ||
| if(mode != "nearest" and mode != "linear") | ||
| MIGRAPHX_THROW("RESIZE: Only 'nearest' and 'linear' modes are supported"); | ||
| 
     | 
||
| // Inputs are X, sizes or scale, ROI and axes not supported. | ||
| if(inputs.size() == 1) | ||
| 
          
            
          
           | 
    @@ -203,9 +204,19 @@ struct resize | |
| // compute() method. For any other target, there must be a compiler pass that replaces | ||
| // this operation with a fixed-size output at runtime. | ||
| std::size_t max_val = std::numeric_limits<std::size_t>::max(); | ||
| std::vector<shape::dynamic_dimension> dyn_dims(inputs.back().lens().at(0), | ||
| shape::dynamic_dimension{0, max_val}); | ||
| return {inputs.front().type(), dyn_dims}; | ||
| auto input = inputs.front(); | ||
| std::vector<shape::dynamic_dimension> dyn_dims(input.ndim(), {0, max_val}); | ||
| 
     | 
||
| if(not scales.empty()) | ||
| { | ||
| for(std::size_t i = 0; i < scales.size(); i++) | ||
| { | ||
| dyn_dims[i].min = static_cast<std::size_t>(input.dyn_dims()[i].min * scales[i]); | ||
| dyn_dims[i].max = static_cast<std::size_t>(input.dyn_dims()[i].max * scales[i]); | ||
                
       | 
||
| } | ||
| } | ||
| 
     | 
||
| return {input.type(), dyn_dims}; | ||
| } | ||
| } | ||
| 
     | 
||
| 
          
            
          
           | 
    @@ -258,50 +269,127 @@ struct resize | |
| // Copy the output size from args[1]. | ||
| std::copy(input.begin(), input.end(), out_lens.begin()); | ||
| // Deduce the scales for each axis | ||
| std::transform( | ||
| input.begin(), | ||
| input.end(), | ||
| in_lens.begin(), | ||
| vec_scale.begin(), | ||
| [](auto sz, size_t in_len) { return static_cast<float>(sz) / in_len; }); | ||
| std::transform(input.begin(), | ||
| input.end(), | ||
| in_lens.begin(), | ||
| vec_scale.begin(), | ||
| [](auto sz, size_t in_len) { return static_cast<float>(sz) / in_len; }); | ||
| } | ||
| else | ||
| { | ||
| // read the scale from args[1] | ||
| // | ||
| std::copy(input.begin(), input.end(), vec_scale.begin()); | ||
| // compute the output dimensions from the given scales. This computation | ||
| // always rounds down, unlike the internal computation in Nearest mode | ||
| // which has several options as given in nearest_mode. | ||
| std::transform(input.begin(), | ||
| input.end(), | ||
| in_lens.begin(), | ||
| out_lens.begin(), | ||
| [](auto scale_i, size_t in_len) { | ||
| return static_cast<size_t>(scale_i * in_len); | ||
| }); | ||
| input.end(), | ||
| in_lens.begin(), | ||
| out_lens.begin(), | ||
| [](auto scale_i, size_t in_len) { | ||
| return static_cast<size_t>(scale_i * in_len); | ||
| }); | ||
| } | ||
| }); | ||
| } | ||
| 
     | 
||
| shape output_shape = {args[0].get_shape().type(), out_lens}; | ||
| argument result{output_shape}; | ||
| auto nearest_op = get_nearest_op(nearest_mode); | ||
| auto idx_op = get_original_idx_op(coordinate_transformation_mode); | ||
| 
     | 
||
| // Populate each element in output by selecting "nearest" item in input. | ||
| visit_all(result, args[0])([&](auto output, auto data) { | ||
| migraphx::shape out_comp_shape{data.get_shape().type(), out_lens}; | ||
| shape_for_each(out_comp_shape, [&](const auto& out_idx_v, size_t out_idx) { | ||
| std::vector<size_t> in_idx(out_idx_v.size()); | ||
| for(auto ii = 0; ii < out_idx_v.size(); ++ii) | ||
| { | ||
| auto idx_val = idx_op(in_lens[ii], out_lens[ii], out_idx_v[ii], vec_scale[ii]); | ||
| in_idx[ii] = nearest_op(in_lens[ii], idx_val); | ||
| } | ||
| output[out_idx] = data(in_idx.begin(), in_idx.end()); | ||
| 
     | 
||
| auto idx_op = get_original_idx_op(coordinate_transformation_mode); | ||
| 
     | 
||
| if(mode == "nearest") | ||
| { | ||
| auto nearest_op = get_nearest_op(nearest_mode); | ||
| // Populate each element in output by selecting "nearest" item in input. | ||
| visit_all(result, args[0])([&](auto output, auto data) { | ||
| migraphx::shape out_comp_shape{data.get_shape().type(), out_lens}; | ||
| shape_for_each(out_comp_shape, [&](const auto& out_idx_v, size_t out_idx) { | ||
| std::vector<size_t> in_idx(out_idx_v.size()); | ||
| for(std::size_t ii = 0; ii < out_idx_v.size(); ++ii) | ||
| { | ||
| auto idx_val = idx_op(in_lens[ii], out_lens[ii], out_idx_v[ii], vec_scale[ii]); | ||
| in_idx[ii] = nearest_op(in_lens[ii], idx_val); | ||
| } | ||
| output[out_idx] = data(in_idx.begin(), in_idx.end()); | ||
| }); | ||
| }); | ||
| }); | ||
| } | ||
| else if(mode == "linear") | ||
| { | ||
| // N-D multilinear interpolation | ||
| visit_all(result, args[0])([&](auto output, auto data) { | ||
| using in_value_t = typename decltype(data)::value_type; | ||
| using acc_type = double; // accumulate in double for precision | ||
| 
     | 
||
| migraphx::shape out_comp_shape{data.get_shape().type(), out_lens}; | ||
| shape_for_each(out_comp_shape, [&](const auto& out_idx_v, size_t out_idx) { | ||
| const std::size_t ndim = out_idx_v.size(); | ||
| 
     | 
||
| // Precompute base indices and weights per dimension | ||
| std::vector<std::size_t> i0(ndim); | ||
| std::vector<std::size_t> i1(ndim); | ||
| std::vector<double> t(ndim); | ||
| 
     | 
||
| for(std::size_t d = 0; d < ndim; d++) | ||
| { | ||
| // Compute the original floating-point coordinate per coordinate_transformation_mode | ||
| double coord = idx_op(in_lens[d], out_lens[d], out_idx_v[d], vec_scale[d]); | ||
| 
     | 
||
| // Clamp to valid input range [0, in_lens[d]-1] | ||
| double max_c = in_lens[d] > 0 ? static_cast<double>(in_lens[d] - 1) : 0.0; | ||
| coord = std::max(0.0, std::min(max_c, coord)); | ||
| 
     | 
||
| std::size_t base = static_cast<std::size_t>(std::floor(coord)); | ||
| std::size_t next = std::min(base + 1, (in_lens[d] == 0 ? 0 : in_lens[d] - 1)); | ||
| double frac = coord - static_cast<double>(base); | ||
| 
     | 
||
| // Handle degenerate dimension (length 1) to avoid NaNs | ||
| if(in_lens[d] <= 1) | ||
| { | ||
| base = 0; | ||
| next = 0; | ||
| frac = 0.0; | ||
| } | ||
| 
     | 
||
| i0[d] = base; | ||
| i1[d] = next; | ||
| t[d] = frac; | ||
| } | ||
| 
     | 
||
| // Accumulate over 2^ndim corners | ||
| acc_type acc = 0.0; | ||
| const std::size_t corners = (ndim == 0) ? 1 : (1ULL << ndim); | ||
| std::vector<std::size_t> in_idx(ndim); | ||
| 
     | 
||
| for(std::size_t mask = 0; mask < corners; ++mask) | ||
| { | ||
| double w = 1.0; | ||
| for(std::size_t d = 0; d < ndim; ++d) | ||
| { | ||
| const bool use_high = ((mask >> d) & 1U) != 0U; | ||
| w *= use_high ? t[d] : (1.0 - t[d]); | ||
| in_idx[d] = use_high ? i1[d] : i0[d]; | ||
| } | ||
| 
     | 
||
| if(w != 0.0) | ||
| { | ||
| in_value_t v = data(in_idx.begin(), in_idx.end()); | ||
| acc += w * static_cast<acc_type>(v); | ||
| } | ||
| } | ||
| 
     | 
||
| // Cast back to the output element type | ||
| using out_value_t = typename decltype(output)::value_type; | ||
| output[out_idx] = static_cast<out_value_t>(acc); | ||
| }); | ||
| }); | ||
| } | ||
| else | ||
| { | ||
| MIGRAPHX_THROW("RESIZE: Unsupported mode in compute()"); | ||
| } | ||
| 
     | 
||
| return result; | ||
| } | ||
| }; | ||
| 
          
            
          
           | 
    ||
| Original file line number | Diff line number | Diff line change | 
|---|---|---|
| 
          
            
          
           | 
    @@ -470,6 +470,20 @@ struct parse_resize : op_parser<parse_resize> | |
| auto out_lens = resize.out_lens; | ||
| auto vec_scale = resize.vec_scale; | ||
| 
     | 
||
| if(args_0->get_shape().dynamic()) | ||
| { | ||
| // Resize's compute_shape() will read scales_sizes_arg as "scales" or "sizes" | ||
| // depending on its data type | ||
| 
     | 
||
| return info.add_instruction( | ||
| make_op("resize", | ||
| {{"mode", "linear"}, | ||
| {"scales", vec_scale}, | ||
| {"coordinate_transformation_mode", resize.get_coord_trans_mode()}}), | ||
| args_0, | ||
| resize.get_scales_sizes_arg()); | ||
| } | ||
| 
         
      Comment on lines
    
      +473
     to 
      +485
    
   
  
    
 | 
||
| 
     | 
||
| // out_lens and other variables can't be populated if non-constant (runtime) size | ||
| // inputs. | ||
| if(not resize.is_constant_scale_input()) | ||
| 
          
            
          
           | 
    ||
| Original file line number | Diff line number | Diff line change | 
|---|---|---|
| @@ -0,0 +1,51 @@ | ||
| /* | ||
| * The MIT License (MIT) | ||
| * | ||
| * Copyright (c) 2015-2025 Advanced Micro Devices, Inc. All rights reserved. | ||
| * | ||
| * Permission is hereby granted, free of charge, to any person obtaining a copy | ||
| * of this software and associated documentation files (the "Software"), to deal | ||
| * in the Software without restriction, including without limitation the rights | ||
| * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | ||
| * copies of the Software, and to permit persons to whom the Software is | ||
| * furnished to do so, subject to the following conditions: | ||
| * | ||
| * The above copyright notice and this permission notice shall be included in | ||
| * all copies or substantial portions of the Software. | ||
| * | ||
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | ||
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | ||
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | ||
| * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | ||
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | ||
| * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN | ||
| * THE SOFTWARE. | ||
| */ | ||
| 
     | 
||
| #include <migraphx/register_target.hpp> | ||
| #include <migraphx/verify.hpp> | ||
| #include <onnx_test.hpp> | ||
| 
     | 
||
| TEST_CASE(resize_downsample_linear_dyn_test) | ||
| { | ||
| using migraphx::half; | ||
| migraphx::onnx_options options; | ||
| options.map_dyn_input_dims = {{"X", {{1, 1}, {1, 1}, {2, 3}, {4, 8}}}}; | ||
| migraphx::program p = read_onnx("resize_downsample_linear_half_test.onnx"); | ||
                
      
                  kahmed10 marked this conversation as resolved.
               
              
                Outdated
          
            Show resolved
            Hide resolved
         | 
||
| p.compile(migraphx::make_target("ref")); | ||
| 
     | 
||
| migraphx::shape sx{migraphx::shape::half_type, {1, 1, 2, 4}}; | ||
| std::vector<half> dx = {half{1}, half{2}, half{3}, half{4}, half{5}, half{6}, half{7}, half{8}}; | ||
| 
     | 
||
| migraphx::parameter_map pp; | ||
| pp["X"] = migraphx::argument(sx, dx.data()); | ||
| 
     | 
||
| auto result = p.eval(pp).back(); | ||
| std::vector<half> result_vector; | ||
| result.visit([&](auto output) { result_vector.assign(output.begin(), output.end()); }); | ||
| 
     | 
||
| // Expected output was calculated without any quantization | ||
| std::vector<half> gold = {half{2.8333333}, half{4.833333}}; | ||
| 
     | 
||
| EXPECT(migraphx::verify::verify_rms_range(result_vector, gold)); | ||
| } | ||
| Original file line number | Diff line number | Diff line change | 
|---|---|---|
| @@ -0,0 +1,51 @@ | ||
| /* | ||
| * The MIT License (MIT) | ||
| * | ||
| * Copyright (c) 2015-2025 Advanced Micro Devices, Inc. All rights reserved. | ||
| * | ||
| * Permission is hereby granted, free of charge, to any person obtaining a copy | ||
| * of this software and associated documentation files (the "Software"), to deal | ||
| * in the Software without restriction, including without limitation the rights | ||
| * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | ||
| * copies of the Software, and to permit persons to whom the Software is | ||
| * furnished to do so, subject to the following conditions: | ||
| * | ||
| * The above copyright notice and this permission notice shall be included in | ||
| * all copies or substantial portions of the Software. | ||
| * | ||
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | ||
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | ||
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | ||
| * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | ||
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | ||
| * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN | ||
| * THE SOFTWARE. | ||
| */ | ||
| 
     | 
||
| #include <migraphx/register_target.hpp> | ||
| #include <migraphx/verify.hpp> | ||
| #include <onnx_test.hpp> | ||
| 
     | 
||
| TEST_CASE(resize_upsample_linear_dyn_test) | ||
| { | ||
| migraphx::onnx_options options; | ||
| options.map_dyn_input_dims = {{"X", {{1, 1}, {1, 1}, {2, 3}, {2, 3}}}}; | ||
| 
     | 
||
| migraphx::program p = read_onnx("resize_upsample_linear_test.onnx", options); | ||
| p.compile(migraphx::make_target("ref")); | ||
| 
     | 
||
| migraphx::shape sx{migraphx::shape::float_type, {1, 1, 2, 2}}; | ||
| std::vector<float> dx = {1.0f, 2.0f, 3.0f, 4.0f}; | ||
| 
     | 
||
| migraphx::parameter_map pp; | ||
| pp["X"] = migraphx::argument(sx, dx.data()); | ||
| 
     | 
||
| auto result = p.eval(pp).back(); | ||
| std::vector<float> result_vector; | ||
| result.visit([&](auto output) { result_vector.assign(output.begin(), output.end()); }); | ||
| 
     | 
||
| std::vector<float> gold = { | ||
| 1, 1.25, 1.75, 2, 1.5, 1.75, 2.25, 2.5, 2.5, 2.75, 3.25, 3.5, 3, 3.25, 3.75, 4}; | ||
| 
     | 
||
| EXPECT(migraphx::verify::verify_rms_range(result_vector, gold)); | ||
| } | 
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
This (line) is pre-existing. But conceptually, why set dyn_dims to
{0, max_val}. Surely, size0is too small for aresizeoperator. Thanks.There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
This was to signify that no tensor information is known at compile time. We may update this to be {1, max_val} because a dimension can never be < 1, but we need to do this in other places in the codebase for consistency.