A PyTorch model compression library containing easy-to-use methods for knowledge distillation, pruning, and quantization
https://github.com/SforAiDl/KD_Lib.git
cd KD_Lib
python setup.py install
pip install KD-Lib
To implement the most basic version of knowledge distillation from Distilling the Knowledge in a Neural Network and plot loss curves:
import torch
import torch.optim as optim
from torchvision import datasets, transforms
from KD_Lib.KD import VanillaKD
# This part is where you define your datasets, dataloaders, models and optimizers
train_loader = torch.utils.data.DataLoader(
    datasets.MNIST(
        "mnist_data",
        train=True,
        download=True,
        transform=transforms.Compose(
            [transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]
        ),
    ),
    batch_size=32,
    shuffle=True,
)
test_loader = torch.utils.data.DataLoader(
    datasets.MNIST(
        "mnist_data",
        train=False,
        transform=transforms.Compose(
            [transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]
        ),
    ),
    batch_size=32,
    shuffle=True,
)
teacher_model = <your model>
student_model = <your model>
teacher_optimizer = optim.SGD(teacher_model.parameters(), 0.01)
student_optimizer = optim.SGD(student_model.parameters(), 0.01)
# Now, this is where KD_Lib comes into the picture
distiller = VanillaKD(teacher_model, student_model, train_loader, test_loader, 
                      teacher_optimizer, student_optimizer)  
distiller.train_teacher(epochs=5, plot_losses=True, save_model=True)    # Train the teacher network
distiller.train_student(epochs=5, plot_losses=True, save_model=True)    # Train the student network
distiller.evaluate(teacher=False)                                       # Evaluate the student network
distiller.get_parameters()                                              # A utility function to get the number of 
                                                                        # parameters in the  teacher and the student networkTo train a collection of 3 models in an online fashion using the framework in Deep Mutual Learning and log training details to Tensorboard:
import torch
import torch.optim as optim
from torchvision import datasets, transforms
from KD_Lib.KD import DML
from KD_Lib.models import ResNet18, ResNet50          # To use models packaged in KD_Lib
# Define your datasets, dataloaders, models and optimizers
train_loader = torch.utils.data.DataLoader(
    datasets.MNIST(
        "mnist_data",
        train=True,
        download=True,
        transform=transforms.Compose(
            [transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]
        ),
    ),
    batch_size=32,
    shuffle=True,
)
test_loader = torch.utils.data.DataLoader(
    datasets.MNIST(
        "mnist_data",
        train=False,
        transform=transforms.Compose(
            [transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]
        ),
    ),
    batch_size=32,
    shuffle=True,
)
student_params = [4, 4, 4, 4, 4]
student_model_1 = ResNet50(student_params, 1, 10)
student_model_2 = ResNet18(student_params, 1, 10)
student_cohort = [student_model_1, student_model_2]
student_optimizer_1 = optim.SGD(student_model_1.parameters(), 0.01)
student_optimizer_2 = optim.SGD(student_model_2.parameters(), 0.01)
student_optimizers = [student_optimizer_1, student_optimizer_2]
# Now, this is where KD_Lib comes into the picture 
distiller = DML(student_cohort, train_loader, test_loader, student_optimizers, log=True, logdir="./logs")
distiller.train_students(epochs=5)
distiller.evaluate()
distiller.get_parameters()Some benchmark results can be found in the logs file.
| Paper / Method | Link | Repository (KD_Lib/) | 
|---|---|---|
| Distilling the Knowledge in a Neural Network | https://arxiv.org/abs/1503.02531 | KD/vision/vanilla | 
| Improved Knowledge Distillation via Teacher Assistant | https://arxiv.org/abs/1902.03393 | KD/vision/TAKD | 
| Relational Knowledge Distillation | https://arxiv.org/abs/1904.05068 | KD/vision/RKD | 
| Distilling Knowledge from Noisy Teachers | https://arxiv.org/abs/1610.09650 | KD/vision/noisy | 
| Paying More Attention To The Attention | https://arxiv.org/abs/1612.03928 | KD/vision/attention | 
| Revisit Knowledge Distillation: a Teacher-free Framework | https://arxiv.org/abs/1909.11723 | KD/vision/teacher_free | 
| Mean Teachers are Better Role Models | https://arxiv.org/abs/1703.01780 | KD/vision/mean_teacher | 
| Knowledge Distillation via Route Constrained Optimization | https://arxiv.org/abs/1904.09149 | KD/vision/RCO | 
| Born Again Neural Networks | https://arxiv.org/abs/1805.04770 | KD/vision/BANN | 
| Preparing Lessons: Improve Knowledge Distillation with Better Supervision | https://arxiv.org/abs/1911.07471 | KD/vision/KA | 
| Improving Generalization Robustness with Noisy Collaboration in Knowledge Distillation | https://arxiv.org/abs/1910.05057 | KD/vision/noisy | 
| Distilling Task-Specific Knowledge from BERT into Simple Neural Networks | https://arxiv.org/abs/1903.12136 | KD/text/BERT2LSTM | 
| Deep Mutual Learning | https://arxiv.org/abs/1706.00384 | KD/vision/DML | 
| The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks | https://arxiv.org/abs/1803.03635 | Pruning/lottery_tickets | 
| Regularizing Class-wise Predictions via Self-knowledge Distillation | https://arxiv.org/abs/2003.13964 | KD/vision/CSDK | 
Please cite our pre-print if you find KD-Lib useful in any way :)
@misc{shah2020kdlib,
  title={KD-Lib: A PyTorch library for Knowledge Distillation, Pruning and Quantization}, 
  author={Het Shah and Avishree Khare and Neelay Shah and Khizir Siddiqui},
  year={2020},
  eprint={2011.14691},
  archivePrefix={arXiv},
  primaryClass={cs.LG}
}